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A 3D CONFORMING-NONCONFORMING MIXED FINITE

ELEMENT FOR SOLVING SYMMETRIC STRESS STOKES

EQUATIONS

MIN ZHANG AND SHANGYOU ZHANG

Abstract. We propose a 3D conforming-nonconforming mixed finite element for solving symmet-
ric stress Stokes equations. The low-order conforming finite elements are not inf-sup stable. The
low-order nonconforming finite elements do not satisfy the Korn inequality. The proposed finite

element space consists of two conforming components and one nonconforming component. We
prove that the discrete inf-sup condition is valid and the discrete Korn inequality holds uniformly
in the mesh-size. Based on these results we give some numerical verification. In addition, this
element is compared numerically with six other mixed finite elements.
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1. Introduction

Finite element methods for the 2D symmetric stress Stokes problem have been
extensively studied in the literature, and most of stable schemes are summarized in
book [6]. However, only little attention has been paid to the 3D problems. Actu-
ally, the nonconforming elements of Crouseix-Raviart [10] is only suitable if ΓN = ∅
due to a missing Korn’s inequality in two as well as in three dimensions. In 2D,
the nonconforming elements of Kouhia and Stenberg [17] circumvent this problem
by choosing one component nonconforming element and the other one conforming
element. [19] has also given a counter example to show that if both of the two
components are nonconforming rotated Q1 elements, discrete Korn’s inequality is
invalid. From these works, we are hinted to use different spaces for different com-
ponents of the velocity to assure the well-posedness of the discrete problem. We
prove that the mixed finite elements with one nonconforming component, the non-
conforming rotated Q1 element, the conforming Q2 element and the conforming
Q1 element for the other two components of the velocity, respectively, satisfy the
discrete Korn inequality. In addition, such a velocity element combined with a
piecewise constant pressure element, i.e., RQ1 ×Q2 ×Q1-P0, is inf-sup stable. For
the nonconforming rotated Q1 element, Rannacher and Turek analyzed this element
in [23] for solving the (gradient) Stokes equations. The element has shown super-
convergence in special meshes according to [18]. However, as mentioned above, this
rotated Q1 element does not satisfy the discrete Korn inequality and does not solve
the symmetric stress Stokes equations (see numerical tests below.) Similarly, the
Cai-Douglas-Santos-Sheen-Ye’s element [7, 8, 11] does not work for the symmetric
stress Stokes equations either. But the element can be used for one component of
the velocity, replacing the rotated Q1 element.

We note that, unlike the 2D case, two components of C0-Q1 of the velocity
are not enough. That is, the RQ1 × Q1 × Q1-P0 mixed finite element does not
solve the symmetric stress Stokes equations. A numerical test on the element is
provided. The proposed RQ1 × Q2 × Q1-P0 is almost the simplest mixed finite
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element. Here we can have another slightly simpler version of the proposed mixed
finite elements that the conforming Q2 can be replaced by the conforming Q2,1,1

space, for example, where Q1,2,1 denote the polynomials of separated degrees 2, 1
and 1. The analysis for this mixed finite element is same. Numerically, we test the
newly proposed finite element, along with six other typical mixed finite elements,
including this simplified element RQ1 ×Q2,1,1 ×Q1-P0.

The rest of the paper is organized as follows. In section 2, we present the sym-
metric stress Stokes problem. In section 3, we define the conforming nonconforming
combined mixed finite element. The well-posedness of the discrete problem and an
error estimate will be proved for the proposed mixed finite element. Section 4
concludes this paper with seven numerical experiments.

Throughout this paper, standard notation on Lebesgue and Sobolev spaces is
employed. (·, ·) denotes the L2 scalar product over Ω. Let ∥ · ∥0,Ω denote the L2

norm over a set Ω ⊂ Ω and ∥·∥0 abbreviate ∥·∥0,Ω. |·|1,h denotes the semi-H1 norm
for nonconforming functions and | · |1 the standard semi-H1 norm. ∂Ω denotes the
boundary of Ω. If there is no special instruction, the bold face letter will indicate a
vector or vector space in order to distinguish it from scalars. Let A . B abbreviates
that there is some mesh-size independent generic constant 0 ≤ C ≤ ∞ such that
A ≤ CB.

2. The symmetric stress Stokes problem

Assuming the domain Ω ∈ R3 is a convex, polyhedral, bounded Lipschitz domain,
which can be triangulated by parallelepipeds (or simply by cuboids), with closed
Dirichlet boundary ΓD and Neumann boundary ΓN = ∂Ω \ ΓD, both with non-
zero two dimensional measure, and some right-hand side functions f ∈ [L2(Ω)]3,
u1 ∈ [H3/2(ΓD)]3 and g ∈ [H1/2(ΓN )]3, the three dimensional symmetric stress
Stokes problem seeks the velocity u ∈ [H1(Ω)]3 and pressure p ∈ L2(Ω) such that

−2µdiv ε(u) +∇p = f in Ω

divu = 0 in Ω

u = uD on ΓD

σn = g on ΓN ,

(1)

where, and throughout this paper, n is the unit normal vector on the boundary,
µ > 0 is the viscosity, σ = (2µε(u) − pI), and ε(u) is the symmetric gradient of a
vector, which is

ε(u) =
1

2
(∇u+∇uT )

=
1

2

 2∂xu1 ∂yu1 + ∂xu2 ∂zu1 + ∂xu3

∂yu1 + ∂xu2 2∂yu2 ∂zu2 + ∂yu3

∂zu1 + ∂xu3 ∂zu2 + ∂yu3 2∂zu3


for any u = [u1 u2 u3]

T ∈ [H1(Ω)]3.
We note that due to the boundary conditions, the symmetric stress Stokes prob-

lem (1) is not equivalent to a standard (gradient) Stokes problem.
The weak formulation of equation (1) reads Find (u, p) ∈ V × L2(Ω), such that a(u,v) + b(p,v) = (f ,v) +

∫
ΓN

g · vds ∀v ∈ V0,

b(q,u) = 0 ∀q ∈ L2(Ω),

(2)


