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A NEW FINITE ELEMENT FOR INTERFACE PROBLEMS

HAVING ROBIN TYPE JUMP

DO Y. KWAK, SEUNGWOO LEE, AND YUNKYONG HYON

Abstract. We propose a new finite element method for solving second order elliptic interface
problems whose solution has a Robin type jump along the interface. We cast the problem into a
new variational form and introduce a finite element method to solve it using a uniform grid. We
modify the P1-Crouzeix-Raviart element so that the shape functions satisfy the jump conditions
along the interface. We note that there are cases that the Lagrange type basis can not be used
because of the jump in the value. Numerical experiments are provided.
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1. Introduction

In recent years, there has been an extensive research towards problems involv-
ing interface, (see [1, 15, 22, 37, 35, 39, 41] and references therein) and numerical
methods for such problems. A widely studied example is an elliptic problem hav-
ing discontinuous coefficients, where the solution satisfies natural jump conditions
[u] = 0, [β ∂u

∂n ] = 0 across the interface immersed in domain. See [14, 21, 23, 40, 41],
for example. This kind of problem typically arises from diffusion phenomena in
a material consisting of heterogeneous media. Other important class of prob-
lem includes the time-dependent problems which may have a moving interface
[24, 33, 38, 42], for instance, the incompressible Navier-Stokes equations for two
fluids [19, 36] and an solid/solid or solid/fluid interaction problems [8, 9, 22]. In
most of those examples, the primary variables, such as heat, potential, displacement
and velocity, etc., or their derivatives (or flux) have certain jumps. To solve such
problems numerically, for instance by finite element method, one usually need to
use body fitted grids to get the optimal numerical results. But the grid generation
is complicated and it is a time consuming job to solve the linear equation derived
from the body fitted grids since the matrix is unstructured.

On the other hand, a new class of finite element methods have been suggested and
are shown to perform quite well for interface problems, see [14, 30, 41] and references
therein. These methods are called immersed finite element methods (IFEMs) which
use non fitted (say, uniform) grid for interface problems (so the interface cuts the
interior of some elements). The idea of this new method is to modify the basis
functions so that they satisfy the interface conditions along the interface within
each element. Although the first one of these schemes was proposed for the finite
element methods using Lagrange type P1 element having degree of freedom at
vertices, the idea works well especially with Crouzeix-Raviart(CR) nonconforming
basis functions [17], since the consistency error term can be shown to be optimal
when CR bases are used [30].

Let us briefly review some works related to general interface conditions. An-
got [46] proposed a fictitious domain method to embed a smooth domain into a
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rectangular domain and showed that the two formulations are equivalent. In the
meantime, the boundary condition was transformed into an interface condition.
The numerical scheme using uniform grids was proposed in [4]. They used stan-
dard piecewise linear basis function together with the local refinement to resolve the
smooth interface. Similar approach using finite volume methods was earlier sug-
gested in [3]. For the problem with natural interface conditions, Ji et al. [25] have
studied similar problems using the standard basis function on each sub element,
hence they need extra basis functions. Their scheme also has the problem of severe
deterioration of condition number. Hence they proposed adding a ghost-penalty
suggested in [12] to stabilize the condition number of the resulting matrix. There
are other types of unfitted grid method, see [21], [22] and references therein, where
one uses cut basis functions as extra degree of freedoms. The case of elasticity
problems with homogeneous condition using rectangular grids was considered in
[44] and the analysis for triangular grids is carried out in [31]. One dimensional
poroelasticity problem using IIM was considered by Bean et al. [7]. Furthermore,
coupled Darcy flow and Stokes flow are studied in [34] and the numerical method
based on DG scheme has appeared in [47].

In this paper, we propose a new IFEM scheme using CR nonconforming basis
functions which can handle jump discontinuity of different kinds. All of the schemes
discussed above have certain similarity with our scheme in the sense that they all
use unfitted grids. However, they are different from ours at least one of the following
aspect; either (i) they treat homogenous jump condition only (the solution is thus
continuous), or (ii) they use Lagrange type P1 nodal basis functions, or (iii) they
do not consider consistency terms to compensate the errors, or (iv) they use extra
degrees of freedom to capture the discontinuity along the interface, or (v) their
scheme have the problem of ill-conditioning for certain interface. Our scheme to be
presented here does not have any disadvantages/restrictions above.

Now we describe the model equation with interface, where the jump of primary
variable is related to the normal flux. These problems arise in the study of medical
imaging of cancer cells such as MREIT [1, 2], problems with spring-type jumps in
structural mechanics [29, 45], or electrochemotherapy [33], where the conductivity
of cell membrane changes abruptly across the membrane. In the development of
MREIT, for example, we encounter a partial differential equation (PDE) which
models the electric behavior of biological tissue under the influence of an electric
field which involves many cells. Conducting cytoplasm is surrounded by a thin in-
sulating membrane (see Figure 1). Inside each cell Ωi, i = 1, . . . , N , the medium is
homogeneous and isotropic. We assume that the conductivity of the cell Ωi is β for
all i. The outside of cells, which is denoted by Ω0, is also composed of an isotropic
homogeneous medium whose conductivity is β. Let Ω := ∪N

i=0Ω
i be a whole do-

main. The membrane of the cell is very thin and resistive. The thickness d of the
membrane is very small compared to the size of the cells, i.e., d ≪ |Ωi|. Since the
membrane is very resistive, the conductivity of the membrane βmem is close to zero.
The derived model equation depends on the value of conductivity. Similar descrip-
tion may apply to electrochemotherapy. In such problems, the electric potential or


