Maximum Modulus of Polynomials

B. A. Zargar* and Bashir Shaista

Department of Mathematics, University of Kashmir, Srinagar, 190006, Jammu E Kashmir, India

Received 1 June 2016; Accepted (in revised version) 13 January 2017

$$
\begin{aligned}
& \text { Abstract. Let } \\
& \qquad P(z)=\sum_{j=0}^{n} a_{j} z^{j} \\
& \text { be a polynomial of degree } n \text { and let } M(P, r)=\max _{|z|=r}|P(z)| \text {. If } P(z) \neq 0 \text { in }|z|<1 \text {, then } \\
& \qquad M(P, r) \geq\left(\frac{1+r}{1+\rho}\right)^{n} M(P, \rho) . \\
& \text { The result is best possible. In this paper we shall present a refinement of this result and } \\
& \text { some other related results. }
\end{aligned}
$$

Key Words: Maximum modulus, growth of polynomial, derivative.
AMS Subject Classifications: 30A10, 30C10, 30C15

1 Introduction and statement of results

Let

$$
P(z)=\sum_{j=0}^{n} a_{j} z^{j}
$$

be a polynomial of degree n, let

$$
M(P, r)=\max _{|z|=r}|P(z)| \quad \text { and } \quad m(P, 1)=\min _{|z|=1}|P(z)|
$$

then concerning the size of $M(P, r)$ the following results are well known.

[^0]Theorem 1.1 (Bernstein [3]). If $P(z)=\sum_{j=0}^{n} a_{j} z^{j}$ is a polynomial of degree n, then

$$
\begin{equation*}
M(P, R) \leq R^{n} M(P, 1) \text { for } R \geq 1 \tag{1.1}
\end{equation*}
$$

with equality only for $P(z)=\lambda z^{n}$.
Theorem 1.2 (Zarantauello and Verga [6]). If $P(z)=\sum_{j=0}^{n} a_{j} z^{j}$ is a polynomial of degree n, then

$$
\begin{equation*}
M(P, r) \geq r^{n} M(P, 1) \quad \text { for } r \leq 1 \tag{1.2}
\end{equation*}
$$

with equality only for $P(z)=\lambda z^{n}$.
For polynomials not vanishing in $|z|<1$, Rivilin [5] proved:
Theorem 1.3. If $P(z)=\sum_{j=0}^{n} a_{j} z^{j}$ is a polynomial of degree $n, P(z) \neq 0$ in $|z|<1$, then

$$
\begin{equation*}
M(P, r) \geq\left(\frac{1+r}{2}\right)^{n} M(P, 1) \quad \text { for } r \leq 1 \tag{1.3}
\end{equation*}
$$

The result is best possible with equality only for the polynomial

$$
P(z)=\left(\frac{\lambda+\mu z}{2}\right)^{n}, \quad|\lambda|=|\mu| .
$$

Govil [2] has proved the following generalization of Theorem 1.3.
Theorem 1.4. If $P(z)=\sum_{j=0}^{n} a_{j} z^{j}$ is a polynomial of degree n having no zero in $|z|<1$, then for $0 \leq r \leq \rho \leq 1$,

$$
\begin{equation*}
M(P, r) \geq\left(\frac{1+r}{1+\rho}\right)^{n} M(P, \rho) \tag{1.4}
\end{equation*}
$$

The result is best possible and equality holds for the polynomial

$$
P(z)=\left(\frac{1+z}{1+\rho}\right)^{n}
$$

He has shown that the bound can be improved if $P^{\prime}(0)=0$ and proved:
Theorem 1.5. If $P(z)=\sum_{j=0}^{n} a_{j} z^{j}$ is a polynomial of degree n, having no zero in $|z|<1, P^{\prime}(0)=0$ then for $0 \leq r \leq \rho \leq 1$,

$$
\begin{equation*}
M(P, r) \geq\left(\frac{1+r}{1+\rho}\right)^{n}\left\{\frac{1}{1-\frac{(1-\rho)(\rho-r) n}{4}\left(\frac{1+r}{1+\rho}\right)^{n-1}}\right\} M(P, \rho) \tag{1.5}
\end{equation*}
$$

In this paper, we shall present the following refinements of Theorems 1.4 and 1.5. Here we prove:

[^0]: *Corresponding author. Email addresses: bazargar@gmail.com (B. A. Zargar), pandithsha@gmail.com (B. Shaista)

