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Abstract

This paper develops and analyzes multigrid semismooth Newton methods for a class

of inequality-constrained optimization problems in function space which are motivated by

and include linear elastic contact problems of Signorini type. We show that after a suitable

Moreau-Yosida type regularization of the problem superlinear local convergence is obtained

for a class of semismooth Newton methods. In addition, estimates for the order of the error

introduced by the regularization are derived. The main part of the paper is devoted to

the analysis of a multilevel preconditioner for the semismooth Newton system. We prove a

rigorous bound for the contraction rate of the multigrid cycle which is robust with respect

to sufficiently small regularization parameters and the number of grid levels. Moreover, it

applies to adaptively refined grids. The paper concludes with numerical results.
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1. Introduction

In this paper, a class of multigrid semismooth Newton methods for constrained optimization

problems is developed and systematically analyzed. The considered problem class is motivated

by linear elastic contact problems, which are included as a special case. We work with the same

nonpenetration constraints as in linear contact, but compared to linear elasticity, we cover more

general cost functions than the quadratic elastic energy. More precisely, the problems have the

following form:

min
u∈U

J(u) subject to τnC(u) ≤ ψ on ΓC . (1.1)

Here, U =
{
u ∈ H1(Ω)d : τDu = 0

}
, Ω ⊂ Rd is a bounded open domain, and ΓC and ΓD are

disjoint subsets of the boundary ∂Ω of Ω. Further, τD : H1(Ω)d → H1/2(ΓD)d is the trace

operator on ΓD, i.e., τD(u)(x) = u(x) for all x ∈ ΓD if u is continuous on Ω̄; τnC = nT τC : U→
V := H1/2(ΓC) is the normal trace operator on ΓC , with n denoting the outer unit normal;

further, ψ : ΓC → R is a given, sufficiently smooth function. Targeting for Newton-type
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methods, the objective function J : U→ R is assumed to be twice continuously differentiable.

Some additional requirements on Ω, ΓC , ΓD, and J will be given below.

Problem of the form (1.1) arise, e.g., in elastic contact problems, where Ω is the reference

configuration of an elastic body, u(x) denotes the displacement of the reference point x ∈ Ω,

and J is the total energy. The constraint then expresses that the normal displacement on ΓC

shall not exceed ψ, which can be interpreted as the normal distance to a rigid obstacle.

Our approach uses a Moreau-Yosida (MY) regularization to obtain a nonsmooth approxima-

tion of the first order optimality conditions that is suitable for applying a semismooth Newton

method. We develop a superlinear convergence theory in function space as well as error esti-

mates for the MY-regularized solutions. A particular focus of the paper is put on a multigrid

method for preconditioning or solving the linear semismooth Newton systems.

The MY-regularization is required since the problem contains a pointwise inequality con-

straint that is posed in a Sobolev space V := H1/2(ΓC). The natural space for the Lagrange

multiplier is then the dual space V ′ and thus the complementarity condition cannot be written

in a pointwise almost everywhere form. For sufficiently smooth data, regularity results for the

solution can be used to infer that the multiplier is an Lq-function. Then, a nonsmooth pointwise

reformulation of the complementarity condition would in fact be possible. However, in a primal-

dual formulation of the optimality system, replacing the multiplier space V ′ by Lq does not

provide a framework where the linear operator in the Newton system is boundedly invertible.

Thus, a dual regularization would be required to fix this [1,2]; as we will see, such a regulariza-

tion is equivalent to the Moreau-Yosida approach, see also [3, Sec. 2.1] and [2, Sec. 8.2.4 and

9.2]. A different alternative, chosen, e.g., in [4–7], is to consider the problem after discretization

and relying on the fact that then all norms are equivalent. However, this comes at the cost of

dimension-dependent condition numbers and norm equivalence constants. This regularization

by discretization (or well-posedness through discretization) strategy requires to combine it with

a nested iteration from coarse to fine grids to compensate for the lack of mesh-independence

since a function space counterpart of the discrete algorithm is then missing. We therefore prefer

to work with the MY-regularization, which by our error estimates can be balanced with the

discretization error, to have a well-posed algorithm also in function space.

Extending results in [1–3], we show that a regularization with parameter α > 0 results in

a solution that deviates at most by o(α1/2) (as α → 0+) from the true solution if the true

Lagrange multiplier is in L2(ΓC). Further, if the Lagrange multiplier is in Hs(ΓC), 0 < s ≤ 1/2

and the derivative of J is κ-Hölder continuous near the solution (which holds globally with

κ = 1 for linear elasticity), we show that the convergence rate is O(α
1+2s

2+4s(1−κ) ). Multiplier

regularity can be ensured under suitable assumptions by invoking regularity results for elastic

obstacle problems [8–10]. We then introduce a finite element discretization and, based on this,

a discrete counterpart of the semismooth Newton’s method.

The main part of the paper is devoted to the analysis of a multigrid cycle that can be

used stand alone or as a preconditioner to solve the semismooth Newton system to the desired

accuracy. Due to the regularization, multigrid methods for the semismooth Newton system

require special care. The regularization introduces an algebraic (i.e. non-differential) operator

acting on ΓC that is strongly weighted. This requires to develop a special multigrid iteration.

Building on a general framework of multilevel convergence theory [11], we prove a guaranteed

contraction rate that is independent of the number of grid levels and uniform for all regular-

ization parameters α ∈ (0, α+
h ], where the upper bound α+

h > 0 depends on the mesh size h of

the finest grid in the contact region, but is larger than required to balance the regularization


