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A SYSTEMATIC METHOD TO CONSTRUCT MIMETIC

FINITE-DIFFERENCE SCHEMES FOR INCOMPRESSIBLE

FLOWS

CHIARA SORGENTONE AND BERNARDO FAVINI

Abstract. We present a general procedure to construct a non-linear mimetic finite-difference

operator. The method is very simple and general: it can be applied for any order scheme, for any
number of grid points and for any operator constraints.
In order to validate the procedure, we apply it to a specific example, the Jacobian operator
for the vorticity equation. In particular we consider a finite difference approximation of a second

order Jacobian which uses a 9x9 uniform stencil, verifies the skew-symmetric property and satisfies
physical constraints such as conservation of energy and enstrophy. This particular choice has been
made in order to compare the present scheme with Arakawa’s renowned Jacobian, which turns out
to be a specific case of the general solution. Other possible generalizations of Arakawa’s Jacobian

are available in literature but only the present approach ensures that the class of solutions found is
the widest possible. A simplified analysis of the general scheme is proposed in terms of truncation
error and study of the linearised operator together with some numerical experiments. We also
propose a class of analytical solutions for the vorticity equation to compare an exact solution with

our numerical results.
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Introduction

We consider the vorticity equation for two-dimensional incompressible inviscid
flow on a biperiodic domain D in the variables x and y,

(1a)
∂ζ

∂t
+∇ · (vζ) = 0

where

(1b) ∇ · v = 0

(1c) v = k×∇ψ

(1d) ζ = k · ∇ × v = ∇2ψ

ζ = ζ(x, y) is the vorticity, v = (u(x, y); v(x, y); 0) is the velocity field, ψ = ψ(x, y) is
the stream function and k is the unit vector normal to the plane of motion; A ·B,
A × B and ∇ denote respectively the standard three-dimensional dot and cross
product of two vectors A = (A1;A2;A3) and B = (B1;B2;B3) and the gradient

operator i.e. A ·B =
∑3
i=1AiBi, A×B = (A2B3 − A3B2;A3B1 − A1B3;A1B2 −

A2B1) and ∇ = ( ∂∂x ,
∂
∂y ,

∂
∂z ). Using eqs. (1b)-(1c) and recalling that we deal with

a two-dimensional flow, eqs.(1a),(1d) simplifies to:

∂ζ

∂t
+
∂ψ

∂x

∂ζ

∂y
− ∂ψ

∂y

∂ζ

∂x
= 0; ζ =

∂2ψ

∂x2
+
∂2ψ

∂y2
.
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We introduce the Jacobian operator

(2) J(a, b) =
∂a

∂x

∂b

∂y
− ∂a

∂y

∂b

∂x

with the following properties:

• Skew-symmetry:

(3) J(a, b) = −J(b, a)
• Integral property:

(4) aJ(b, c) = cJ(a, b)

where f =
∫
D
fdxdy.

We can rewrite equation (1a) as:

(5)
∂ζ

∂t
= J(ζ, ψ).

Conserved quantities

We start with two definitions.

Definition 1. The mean kinetic energy for the equation (5) is defined as:

(6) K =
1

2
(∇ψ)2.

Definition 2. The enstrophy (mean square vorticity) for the equation (5) is defined
as:

(7) G =
1

2
ζ2.

For any motion governed by equation (1) we have physical constraints such as
conservation of energy,

∂K

∂t

(8a)
=

1

2

∂(∇ψ)2
∂t

((8b)
= (∇ψ) · ∂(∇ψ)

∂t

((8c)
= −ψ∂(∆ψ)

∂t

((8d)
= −ψ∂ζ

∂t

((8e)
= −ψJ(ζ, ψ) ((8f)

= 0

(8)

and conservation of enstrophy,

(9)
∂G

∂t

((9a)
=

1

2

∂(ζ2)

∂t

(9b)
= ζ

∂ζ

∂t

(9c)
= ζJ(ζ, ψ)

(9d)
= 0

where the RHS of both equations is zero thanks to the skew-symmetric (3) and the
integral (4) properties with, respectively, a = c = ψ and a = b = ζ.

It is well known that non-linear problems as system (1) require the correct mod-
eling of sub-grid terms (see, for example, J. Smagorinsky 1963 [17], J. W. Deardorff
1970 [2]); in this context special attention has been given when considering large-
eddy simulations (LES) to the interaction between truncation error of the underly-
ing discretization and the sub-grid scale modeling ([26], [27], [28]). The main issue
is that a false transfer of energy between different scales can occur depending on
different forms of truncation error, corresponding to different forms of discretiza-
tion. In 1959 Phillips [14], treating non-linear numerical instability, proposed to
add a smoothing term to equation (1a), but his solution resulted to be physically in-
correct and to compromise the simulation. To overcome this problem, Arakawa [1]


