Power Concavity for Doubly Nonlinear Parabolic Equations

Leina Zhao*
College of Mathematics and Statistics, Chongqing Jiaotong University, Chongqing 400074, P. R. of China.

Received 9 September, 2016; Accepted 21 March, 2017

Abstract

We prove the concavity of the power of a solution is preserved for a class of doubly nonlinear parabolic equation, which is a well-known feature in some particular cases such as the porous medium equation or the parabolic p-Laplace equation.

AMS subject classifications: 35B50, 35E10, 35K65.
Key words: Maximum principle, degenerate parabolic equation, concavity.

1 Introduction and main results

In this paper, the geometric quantity preserved in a kinds of double nonlinearity equations is concerned, which may give us the convexity of level sets of the solution.

$$
\begin{equation*}
u_{t}=\nabla\left[\left|\nabla\left(|u|^{m-1} u\right)\right|^{p-2} \nabla\left(|u|^{m-1} u\right)\right], \tag{1.1}
\end{equation*}
$$

where for some $n \geq 2, t \in[0, T]$ for some $T<\infty$, and $m>1, m(p-1)>1$.
Eq. (1.1) has been extensively studied, see $[2,12,14-16,29]$ and their references; for a survey see [12]. In particular, (1.1) has a double nonlinearity as follows:
(a) For $p=2$, it is the porous medium equation

$$
\begin{equation*}
u_{t}=\triangle u^{m}, \tag{1.2}
\end{equation*}
$$

(b) and for $m=1$ which corresponds to the parabolic p-Laplace equation

$$
\begin{equation*}
u_{t}=\nabla\left(|\nabla u|^{p-2} \nabla u\right) . \tag{1.3}
\end{equation*}
$$

[^0]These two limit cases are prototypes for the main features presented by the solutions of (1.1) and are extensively studied in the literature (see, e.g., $[3,9,12,19,25,28]$ for the porous medium equation and $[8,12,13,23,27]$ for the p-Laplacian).

The geometric quantity preserved in various equations that gives us the convexity of level sets of the solution, with such as idea (1.2) and (1.3) were studied in [9] and [23], respectively. We will be concerned with the geometric quantity preserved of the nonnegative density u for the following Cauchy problem.

$$
\begin{cases}u_{t}=\nabla\left[\left|\nabla\left(|u|^{m-1} u\right)\right|^{p-2} \nabla\left(|u|^{m-1} u\right)\right], & \mathbb{R}^{n} \times(0, T], \tag{1.4}\\ u(x, 0)=u_{0}(x), & \mathbb{R}^{n} .\end{cases}
$$

We consider the behavior of the solution u in a neighborhood of the free boundary by considering a pressure v

$$
u=\left(\frac{v}{\alpha}\right)^{\frac{p-1}{m(p-1)-1}},
$$

where α is a constant to be determined, we then have a equation

$$
v_{t}=\left(\frac{1}{\alpha}\right)^{p-1}\left(\frac{m(p-1)}{m(p-1)-1}\right)^{p-1} \frac{m(p-1)-1}{p-1}\left[\nabla\left(|\nabla v|^{p-2} \nabla v\right)+\frac{p-1}{m(p-1)-1}|\nabla v|^{p}\right],
$$

we chose a number α such that

$$
\left(\frac{1}{\alpha}\right)^{p-1}\left(\frac{m(p-1)}{m(p-1)-1}\right)^{p-1} \frac{m(p-1)-1}{p-1}=1 .
$$

Thus, v satisfies

$$
\begin{cases}v_{t}=v \nabla\left(|\nabla v|^{p-2} \nabla v\right)+\frac{p-1}{m(p-1)-1}|\nabla v|^{p}, & \mathbb{R}^{n} \times(0, T], \tag{1.5}\\ v(x, 0)=v_{0}(x), & \mathbb{R}^{n} .\end{cases}
$$

Remark 1.1. - If $m=1$, i.e., $\alpha=\left(\frac{p-1}{p-2}\right)^{\frac{p-2}{p-1}}, u=\frac{p-2}{p-1} v^{\frac{p-1}{p-2}}$, then (1.5) becomes

$$
v_{t}=v \nabla\left[|\nabla v|^{p-2} \nabla v\right]+\frac{p-1}{p-2}|\nabla v|^{p},
$$

which is studied in [8, 12, 13, 23, 27].

- If $p=2$, i.e., $\alpha=m, u=\left(\frac{v}{\alpha}\right)^{\frac{1}{m-1}}$, then (1.5) becomes

$$
v_{t}=v \triangle v+\frac{1}{m-1}|\nabla v|^{2},
$$

which is studied in $[3,9,12,19,25,28]$.

[^0]: *Corresponding author. Email address: zhao_leina@163.com (L. Zhao)

