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Abstract. This paper is devoted to a review of the prolate spheroidal wave functions
(PSWFs) and their variants from the viewpoint of spectral/spectral-element approxi-
mations using such functions as basis functions. We demonstrate the pros and cons
over their polynomial counterparts, and put the emphasis on the construction of es-
sential building blocks for efficient spectral algorithms.
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• “ Investigation of the problem of simultaneously concentrating a function and its Fourier
transform differed from the other problems I have worked on in two fundamental ways.
First, we solved it—completely, easily and quickly. Second, the answer was interesting—
even elegant and beautiful.” — Slepian [85] (1983).

• “ The prolate spheroidal wave functions are likely to be a better tool for the design of spectral
and pseudo-spectral techniques than the orthogonal polynomials and related functions.” —
Xiao, Rokhlin and Yarvin [101] (2001).

• “ The prolate functions are the basis that is “plug-and-play” compatible with finite element
or spectral element or other programs that employ Legendre polynomials. The claimed ad-
vantage of prolate functions is that they resolve wavy, bandlimited signals with only two
points per wavelength, whereas Legendre polynomials and Chebyshev polynomials require
a minimum of π degrees of freedom per wavelength.” — Boyd [9] (2013).

1 Introduction

Claude E. Shannon (1916–2001) once posed the question: To what extent are functions, which
are confined to a finite bandwidth, also concentrated in the time domain? (cf. [60]). This open
question was answered by David Slepian (1923-2007) et al. at Bell Laboratories in a series
of seminal papers dated back to 1960s (see e.g., [53, 83, 86]). “ We found a second-order dif-
ferential equation that commuted with an integral operator that was at the heart of the problem,”
as commented by D. Slepian in [85]. This statement best testifies to their findings: the
prolate spheroidal wave functions of order zero (PSWFs), being the eigenfunctions of a
second-order singular Sturm-Liouville equation, are coincidentally the spectrum of an
integral operator related to the finite Fourier transform. It is also from the latter that a
collection of remarkable properties of PSWFs was discovered. For example, PSWFs are
bi-orthogonal in the sense that they are orthogonal over both a given finite interval and


