Existence Theorem for a Class of Nonlinear Fourth-order Schrödinger-Kirchhoff-Type Equations

TANG Shiqiang, CHEN Peng and LIU Xiaochun*
School of Mathematics and Statistics, Wuhan University, Wuhan 430072, China.

Received 6 September 2016; Accepted 5 June 2017

Abstract

This paper is concerned with the existence of nontrivial solutions for the following fourth-order equations of Kirchhoff type $$
\left\{\begin{array}{l} \Delta^{2} u-\left(a+b \int_{\mathbb{R}^{N}}|\nabla u|^{2} \mathrm{~d} x\right) \Delta u+\lambda V(x) u=f(x, u), \quad x \in \mathbb{R}^{N}, \\ u \in H^{2}\left(\mathbb{R}^{N}\right), \end{array}\right.
$$ where a, b are positive constants, $\lambda \geq 1$ is a parameter, and the nonlinearity f is either superlinear or sublinear at infinity in u. With the help of the variational methods, we obtain the existence and multiplicity results in the working spaces.

AMS Subject Classifications: 52B10, 65D18, 68U05, 68U07
Chinese Library Classifications: O175.27
Key Words: Fourth-order elliptic equations; symmetric mountain pass theorem; Morse theory.

1 Introduction

In this paper, we consider the following nonlinear Schrödinger-Kirchhoff-type problem:

$$
\left\{\begin{array}{l}
\Delta^{2} u-\left(a+b \int_{\mathbb{R}^{N}}|\nabla u|^{2} \mathrm{~d} x\right) \Delta u+\lambda V(x) u=f(x, u), \quad x \in \mathbb{R}^{N} \\
u \in H^{2}\left(\mathbb{R}^{N}\right)
\end{array}\right.
$$

where Δ^{2} is the biharmonic operator and ∇u denotes the spatial gradient of u. Moreover, a, b are positive constants, $\lambda \geq 1$ is a parameter, and the potential $V(x)$ satisfies the following conditions:

[^0]$\left(V_{1}\right) V(x) \in C\left(\mathbb{R}^{N}, \mathbb{R}\right)$ and $\inf _{x \in \mathbb{R}^{N}} V(x) \geq A>0$, for some A;
$\left(V_{2}\right)$ there exists $B>0$ such that the set $\left\{x \in \mathbb{R}^{N}: V(x) \leq B\right\}$ is nonempty and meas $\{x \in$ $\left.\mathbb{R}^{N}: V(x) \leq B\right\}<+\infty$, where "meas" means the Lebesgue measure in \mathbb{R}^{N}.
Problem $\left(P_{\lambda}\right)$ is called nonlocal because of the presence of the term $-\left(a+b \int_{\mathbb{R}^{N}}|\nabla u|^{2} \mathrm{~d} x\right)$, which implies that equation $\left(P_{\lambda}\right)$ is no longer a point-wise indentity. In the recent years, there are many papers about Kirchhoff-type problems without the term of biharmonic operator. On the bounded domain, positive solutions are investegated by authors such as Ma and Rivera [1] and Alves et al. [2]. Sign-changing solutions have been obtained by Zhang and Perera [3] and Mao and Zhang [4]. If the problem is set on \mathbb{R}^{N}, Some interesting results can be found in [5-7] and the references there in.

It is well-known that the following fourth-order elliptic equation of Kirchhoff type:

$$
\left\{\begin{array}{l}
\Delta^{2} u-\left(a+b \int_{\Omega}|\nabla u|^{2} \mathrm{~d} x\right) \Delta u=f(x, u), \quad x \in \Omega \\
u=0, \nabla u=0, \quad \text { on } \partial \Omega
\end{array}\right.
$$

is related to the stationary analogue of the equation of Kirchhoff type:

$$
u_{t t}-\Delta^{2} u-\left(a+b \int_{\Omega}|\nabla u|^{2} \mathrm{~d} x\right) \Delta u=f(x, u), \quad x \in \Omega
$$

which is regarded as a good approximation for describing nonlinear vibrations of beems or plates (see [8,9]). Recently, Ma $[10,11]$ considered the fourth-order equation

$$
\left\{\begin{array}{l}
u^{\prime \prime \prime \prime}-M\left(\int_{0}^{1}\left|u^{\prime}(x)\right|^{2} \mathrm{~d} x\right) u^{\prime \prime}=h(x) f(x, u), \quad 0 \leq x \leq 1, \\
u(0)=u(1)=0, \quad u^{\prime \prime}(0)=u^{\prime \prime}(1)=0,
\end{array}\right.
$$

and obtain the multiplicity of solutions.
Later on, Wang and An [12] get the existence of nontrivial solution of a fourth-order elliptic equation

$$
\begin{cases}\Delta^{2} u-M\left(\int_{\Omega}|\nabla u|^{2} \mathrm{~d} x\right) \Delta u=f(x, u), & x \in \Omega \tag{1.1}\\ u=0, \quad \Delta u=0, & \text { on } \partial \Omega\end{cases}
$$

under some conditions on the function $M(t)$ and f with Mountain Pass theorem. Moreover, Wang et al. also consider the existence of the nontrivial solutions for (1.1) with a parameter λ (see [13]), where $M=a+b t$ and $b \geq 0$.

We note that problem $\left(P_{\lambda}\right)$ with $a=1, b=0$, reduces fourth-order elliptic equations

$$
\left\{\begin{array}{l}
\Delta^{2} u-\Delta u+\lambda V(x) u=f(x, u), \quad x \in \mathbb{R}^{N} \tag{1.2}\\
u \in H^{2}\left(\mathbb{R}^{N}\right)
\end{array}\right.
$$

[^0]: *Corresponding author. Email addresses: tangshiqiang@whu.edu.cn (S. Tang), whuchenpeng@163.com (P. Chen), xcliu@whu.edu.cn (X. Liu)

