Volume 1, Issue 4
A Second-Order Method for the Electromagnetic Scattering from a Large Cavity

Yingxi Wang, Kui Du & Weiwei Sun

Numer. Math. Theor. Meth. Appl., 1 (2008), pp. 357-382.

Published online: 2008-01

Preview Full PDF 528 3314
Export citation
  • Abstract

In this paper, we study the electromagnetic scattering from a two dimensional large rectangular open cavity embedded in an infinite ground plane, which is modelled by Helmholtz equations. By introducing nonlocal transparent boundary conditions, the problem in the open cavity is reduced to a bounded domain problem. A hypersingular integral operator and a weakly singular integral operator are involved in the TM and TE cases, respectively. A new second-order Toeplitz type approximation and a second-order finite difference scheme are proposed for approximating the hypersingular integral operator on the aperture and the Helmholtz in the cavity, respectively. The existence and uniqueness of the numerical solution in the TE case are established for arbitrary wavenumbers. A fast algorithm for the second-order approximation is proposed for solving the cavity model with layered media. Numerical results show the second-order accuracy and efficiency of the fast algorithm. More important is that the algorithm is easy to implement as a preconditioner for cavity models with more general media.

  • Keywords

Electromagnetic scattering, Helmholtz equation, fast algorithm, Toeplitz matrix, second-order method.

  • AMS Subject Headings

78M20, 65N22, 65N06

  • Copyright

COPYRIGHT: © Global Science Press

  • Email address
  • BibTex
  • RIS
  • TXT
@Article{NMTMA-1-357, author = {}, title = {A Second-Order Method for the Electromagnetic Scattering from a Large Cavity}, journal = {Numerical Mathematics: Theory, Methods and Applications}, year = {2008}, volume = {1}, number = {4}, pages = {357--382}, abstract = {

In this paper, we study the electromagnetic scattering from a two dimensional large rectangular open cavity embedded in an infinite ground plane, which is modelled by Helmholtz equations. By introducing nonlocal transparent boundary conditions, the problem in the open cavity is reduced to a bounded domain problem. A hypersingular integral operator and a weakly singular integral operator are involved in the TM and TE cases, respectively. A new second-order Toeplitz type approximation and a second-order finite difference scheme are proposed for approximating the hypersingular integral operator on the aperture and the Helmholtz in the cavity, respectively. The existence and uniqueness of the numerical solution in the TE case are established for arbitrary wavenumbers. A fast algorithm for the second-order approximation is proposed for solving the cavity model with layered media. Numerical results show the second-order accuracy and efficiency of the fast algorithm. More important is that the algorithm is easy to implement as a preconditioner for cavity models with more general media.

}, issn = {2079-7338}, doi = {https://doi.org/}, url = {http://global-sci.org/intro/article_detail/nmtma/6055.html} }
TY - JOUR T1 - A Second-Order Method for the Electromagnetic Scattering from a Large Cavity JO - Numerical Mathematics: Theory, Methods and Applications VL - 4 SP - 357 EP - 382 PY - 2008 DA - 2008/01 SN - 1 DO - http://doi.org/ UR - https://global-sci.org/intro/article_detail/nmtma/6055.html KW - Electromagnetic scattering, Helmholtz equation, fast algorithm, Toeplitz matrix, second-order method. AB -

In this paper, we study the electromagnetic scattering from a two dimensional large rectangular open cavity embedded in an infinite ground plane, which is modelled by Helmholtz equations. By introducing nonlocal transparent boundary conditions, the problem in the open cavity is reduced to a bounded domain problem. A hypersingular integral operator and a weakly singular integral operator are involved in the TM and TE cases, respectively. A new second-order Toeplitz type approximation and a second-order finite difference scheme are proposed for approximating the hypersingular integral operator on the aperture and the Helmholtz in the cavity, respectively. The existence and uniqueness of the numerical solution in the TE case are established for arbitrary wavenumbers. A fast algorithm for the second-order approximation is proposed for solving the cavity model with layered media. Numerical results show the second-order accuracy and efficiency of the fast algorithm. More important is that the algorithm is easy to implement as a preconditioner for cavity models with more general media.

Yingxi Wang, Kui Du & Weiwei Sun. (2020). A Second-Order Method for the Electromagnetic Scattering from a Large Cavity. Numerical Mathematics: Theory, Methods and Applications. 1 (4). 357-382. doi:
Copy to clipboard
The citation has been copied to your clipboard