Numer. Math. Theor. Meth. Appl., 6 (2013), pp. 538-555.
Published online: 2013-06
Cited by
- BibTex
- RIS
- TXT
In this paper we extend the source transfer domain decomposition method (STDDM) introduced by the authors to solve the Helmholtz problems in two-layered media, the Helmholtz scattering problems with bounded scatterer, and Helmholtz problems in 3D unbounded domains. The STDDM is based on the decomposition of the domain into non-overlapping layers and the idea of source transfer which transfers the sources equivalently layer by layer so that the solution in the final layer can be solved using a PML method defined locally outside the last two layers. The details of STDDM is given for each extension. Numerical results are presented to demonstrate the efficiency of STDDM as a preconditioner for solving the discretization problem of the Helmholtz problems considered in the paper.
}, issn = {2079-7338}, doi = {https://doi.org/10.4208/nmtma.2013.1217nm}, url = {http://global-sci.org/intro/article_detail/nmtma/5917.html} }In this paper we extend the source transfer domain decomposition method (STDDM) introduced by the authors to solve the Helmholtz problems in two-layered media, the Helmholtz scattering problems with bounded scatterer, and Helmholtz problems in 3D unbounded domains. The STDDM is based on the decomposition of the domain into non-overlapping layers and the idea of source transfer which transfers the sources equivalently layer by layer so that the solution in the final layer can be solved using a PML method defined locally outside the last two layers. The details of STDDM is given for each extension. Numerical results are presented to demonstrate the efficiency of STDDM as a preconditioner for solving the discretization problem of the Helmholtz problems considered in the paper.