Numer. Math. Theor. Meth. Appl., 15 (2022), pp. 1193-1218.
Published online: 2022-10
Cited by
- BibTex
- RIS
- TXT
We consider numerical approximation of spectral fractional Laplace-Beltrami problems on closed surfaces. The proposed numerical algorithms rely on their Balakrishnan integral representation and consists a sinc quadrature coupled with standard finite element methods for parametric surfaces. Possibly up to a log term, optimal rate of convergence are observed and derived analytically when the discrepancies between the exact solution and its numerical approximations are measured in $L^2$ and $H^1.$ The performances of the algorithms are illustrated on different settings including the approximation of Gaussian fields on surfaces.
}, issn = {2079-7338}, doi = {https://doi.org/10.4208/nmtma.OA-2022-0005s}, url = {http://global-sci.org/intro/article_detail/nmtma/21099.html} }We consider numerical approximation of spectral fractional Laplace-Beltrami problems on closed surfaces. The proposed numerical algorithms rely on their Balakrishnan integral representation and consists a sinc quadrature coupled with standard finite element methods for parametric surfaces. Possibly up to a log term, optimal rate of convergence are observed and derived analytically when the discrepancies between the exact solution and its numerical approximations are measured in $L^2$ and $H^1.$ The performances of the algorithms are illustrated on different settings including the approximation of Gaussian fields on surfaces.