Numer. Math. Theor. Meth. Appl., 15 (2022), pp. 1063-1098.
Published online: 2022-10
Cited by
- BibTex
- RIS
- TXT
To model wave propagation in inhomogeneous media with frequency dependent power-law attenuation, it is needed to use the fractional powers of symmetric coercive elliptic operators in space and the Caputo tempered fractional derivative in time. The model studied in this paper is semilinear stochastic space-time fractional wave equations driven by infinite dimensional multiplicative Gaussian noise and additive fractional Gaussian noise, because of the potential fluctuations of the external sources. The purpose of this work is to discuss the Galerkin finite element approximation for the semilinear stochastic fractional wave equation. First, the space-time multiplicative Gaussian noise and additive fractional Gaussian noise are discretized, which results in a regularized stochastic fractional wave equation while introducing a modeling error in the mean-square sense. We further present a complete regularity theory for the regularized equation. A standard finite element approximation is used for the spatial operator, and a mean-square priori estimates for the modeling error and the approximation error to the solution of the regularized problem are established. Finally, numerical experiments are performed to confirm the theoretical analysis.
}, issn = {2079-7338}, doi = {https://doi.org/10.4208/nmtma.OA-2022-0013s}, url = {http://global-sci.org/intro/article_detail/nmtma/21090.html} }To model wave propagation in inhomogeneous media with frequency dependent power-law attenuation, it is needed to use the fractional powers of symmetric coercive elliptic operators in space and the Caputo tempered fractional derivative in time. The model studied in this paper is semilinear stochastic space-time fractional wave equations driven by infinite dimensional multiplicative Gaussian noise and additive fractional Gaussian noise, because of the potential fluctuations of the external sources. The purpose of this work is to discuss the Galerkin finite element approximation for the semilinear stochastic fractional wave equation. First, the space-time multiplicative Gaussian noise and additive fractional Gaussian noise are discretized, which results in a regularized stochastic fractional wave equation while introducing a modeling error in the mean-square sense. We further present a complete regularity theory for the regularized equation. A standard finite element approximation is used for the spatial operator, and a mean-square priori estimates for the modeling error and the approximation error to the solution of the regularized problem are established. Finally, numerical experiments are performed to confirm the theoretical analysis.