Numer. Math. Theor. Meth. Appl., 13 (2020), pp. 814-844.
Published online: 2020-03
Cited by
- BibTex
- RIS
- TXT
Among the typical time integrations for PDEs, Leap-frog scheme is the well-known method which can easily be used. A most welcome feature of the Leap-frog scheme is that it has very simple scheme and is easy to be implemented. The main purpose of this paper is to propose and analyze an improved Leap-frog scheme, the so-called continuous-stage modified Leap-frog scheme for high-dimensional semi-linear Hamiltonian wave equations. To this end, under the assumption of periodic boundary conditions, we begin with the formulation of the nonlinear Hamiltonian equation as an abstract second-order ordinary differential equation (ODE) and its operator-variation-of-constants formula (the Duhamel Principle). Then the continuous-stage modified Leap-frog scheme is formulated. Accordingly, the convergence, energy preservation, symplecticity conservation and long-time behaviour of explicit schemes are rigorously analysed. Numerical results demonstrate the remarkable advantage and efficiency of the improved Leap-frog scheme compared with the existing mostly used numerical schemes in the literature.
}, issn = {2079-7338}, doi = {https://doi.org/10.4208/nmtma.OA-2019-0115}, url = {http://global-sci.org/intro/article_detail/nmtma/15786.html} }Among the typical time integrations for PDEs, Leap-frog scheme is the well-known method which can easily be used. A most welcome feature of the Leap-frog scheme is that it has very simple scheme and is easy to be implemented. The main purpose of this paper is to propose and analyze an improved Leap-frog scheme, the so-called continuous-stage modified Leap-frog scheme for high-dimensional semi-linear Hamiltonian wave equations. To this end, under the assumption of periodic boundary conditions, we begin with the formulation of the nonlinear Hamiltonian equation as an abstract second-order ordinary differential equation (ODE) and its operator-variation-of-constants formula (the Duhamel Principle). Then the continuous-stage modified Leap-frog scheme is formulated. Accordingly, the convergence, energy preservation, symplecticity conservation and long-time behaviour of explicit schemes are rigorously analysed. Numerical results demonstrate the remarkable advantage and efficiency of the improved Leap-frog scheme compared with the existing mostly used numerical schemes in the literature.