Volume 12, Issue 4
Notes on New Error Bounds for Linear Complementarity Problems of Nekrasov Matrices, $B$-Nekrasov Matrices and $QN$-Matrices

Ping-Fan Dai, Jicheng Li, Jianchao Bai & Liqiang Dong

Numer. Math. Theor. Meth. Appl., 12 (2019), pp. 1191-1212.

Published online: 2019-06

Preview Full PDF 50 1238
Export citation
  • Abstract

In this paper, we give new error bounds for linear complementarity problems when the matrices involved are Nekrasov matrices, $B$-Nekrasov matrices and $QN$-matrices, respectively. It is proved that the obtained bounds are better than those of Li et al. (New error bounds for linear complementarity problems of Nekrasov matrices and $B$-Nekrasov matrices, Numer. Algor., 74 (2017), pp. 997--1009) and Gao et al. (New error bounds for linear complementarity problems of $QN$-matrices, Numer. Algor.,  77 (2018), pp. 229--242) in some cases, respectively.


  • Keywords

Error bounds, linear complementarity problem, Nekrasov matrices, $B$-Nekrasov matrices, QN-matrices.

  • AMS Subject Headings

65G50, 90C31, 90C33

  • Copyright

COPYRIGHT: © Global Science Press

  • Email address

jcli@mail.xjtu.edu.cn (Jicheng Li)

  • BibTex
  • RIS
  • TXT
@Article{NMTMA-12-1191, author = {Dai , Ping-Fan and Li , Jicheng and Bai , Jianchao and Dong , Liqiang }, title = {Notes on New Error Bounds for Linear Complementarity Problems of Nekrasov Matrices, $B$-Nekrasov Matrices and $QN$-Matrices}, journal = {Numerical Mathematics: Theory, Methods and Applications}, year = {2019}, volume = {12}, number = {4}, pages = {1191--1212}, abstract = {

In this paper, we give new error bounds for linear complementarity problems when the matrices involved are Nekrasov matrices, $B$-Nekrasov matrices and $QN$-matrices, respectively. It is proved that the obtained bounds are better than those of Li et al. (New error bounds for linear complementarity problems of Nekrasov matrices and $B$-Nekrasov matrices, Numer. Algor., 74 (2017), pp. 997--1009) and Gao et al. (New error bounds for linear complementarity problems of $QN$-matrices, Numer. Algor.,  77 (2018), pp. 229--242) in some cases, respectively.


}, issn = {2079-7338}, doi = {https://doi.org/10.4208/nmtma.OA-2018-0091}, url = {http://global-sci.org/intro/article_detail/nmtma/13220.html} }
TY - JOUR T1 - Notes on New Error Bounds for Linear Complementarity Problems of Nekrasov Matrices, $B$-Nekrasov Matrices and $QN$-Matrices AU - Dai , Ping-Fan AU - Li , Jicheng AU - Bai , Jianchao AU - Dong , Liqiang JO - Numerical Mathematics: Theory, Methods and Applications VL - 4 SP - 1191 EP - 1212 PY - 2019 DA - 2019/06 SN - 12 DO - http://dor.org/10.4208/nmtma.OA-2018-0091 UR - https://global-sci.org/intro/nmtma/13220.html KW - Error bounds, linear complementarity problem, Nekrasov matrices, $B$-Nekrasov matrices, QN-matrices. AB -

In this paper, we give new error bounds for linear complementarity problems when the matrices involved are Nekrasov matrices, $B$-Nekrasov matrices and $QN$-matrices, respectively. It is proved that the obtained bounds are better than those of Li et al. (New error bounds for linear complementarity problems of Nekrasov matrices and $B$-Nekrasov matrices, Numer. Algor., 74 (2017), pp. 997--1009) and Gao et al. (New error bounds for linear complementarity problems of $QN$-matrices, Numer. Algor.,  77 (2018), pp. 229--242) in some cases, respectively.


Ping-Fan Dai, Jicheng Li, Jianchao Bai & Liqiang Dong. (2019). Notes on New Error Bounds for Linear Complementarity Problems of Nekrasov Matrices, $B$-Nekrasov Matrices and $QN$-Matrices. Numerical Mathematics: Theory, Methods and Applications. 12 (4). 1191-1212. doi:10.4208/nmtma.OA-2018-0091
Copy to clipboard
The citation has been copied to your clipboard