J. Nonl. Mod. Anal., 5 (2023), pp. 24-53.
Published online: 2023-08
[An open-access article; the PDF is free to any online user.]
Cited by
- BibTex
- RIS
- TXT
We investigate a susceptible-exposed-infectious-recovered (SEIR) epidemic model with asymptomatic infective individuals. First, we formulate a deterministic model, and give the basic reproduction number $R_0.$ We show that the disease is persistent, if $R_0 > 1,$ and it is extinct, if $R_0 < 1.$ Then, we formulate a stochastic version of the deterministic model. By constructing suitable stochastic Lyapunov functions, we establish sufficient criteria for the extinction and the existence of ergodic stationary distribution to the model. As a case, we study the COVID-19 transmission in Wuhan, China, and perform some sensitivity analysis. Our numerical simulations are carried out to illustrate the analytic results.
}, issn = {2562-2862}, doi = {https://doi.org/10.12150/jnma.2023.24}, url = {http://global-sci.org/intro/article_detail/jnma/21915.html} }We investigate a susceptible-exposed-infectious-recovered (SEIR) epidemic model with asymptomatic infective individuals. First, we formulate a deterministic model, and give the basic reproduction number $R_0.$ We show that the disease is persistent, if $R_0 > 1,$ and it is extinct, if $R_0 < 1.$ Then, we formulate a stochastic version of the deterministic model. By constructing suitable stochastic Lyapunov functions, we establish sufficient criteria for the extinction and the existence of ergodic stationary distribution to the model. As a case, we study the COVID-19 transmission in Wuhan, China, and perform some sensitivity analysis. Our numerical simulations are carried out to illustrate the analytic results.