J. Nonl. Mod. Anal., 4 (2022), pp. 587-604.
Published online: 2022-06
[An open-access article; the PDF is free to any online user.]
Cited by
- BibTex
- RIS
- TXT
In this paper, some properties of a stochastic convolution driven by tempered fractional Brownian motion are obtained. Based on this result, we get the existence and uniqueness of stochastic mean-field equation driven by tempered fractional Brownian motion. Furthermore, combining with the Banach fixed point theorem and the properties of Mittag-Leffler functions, we study the existence and uniqueness of mild solution for a kind of time fractional mean-field stochastic differential equation driven by tempered fractional Brownian motion.
}, issn = {2562-2862}, doi = {https://doi.org/10.12150/jnma.2022.587}, url = {http://global-sci.org/intro/article_detail/jnma/20726.html} }In this paper, some properties of a stochastic convolution driven by tempered fractional Brownian motion are obtained. Based on this result, we get the existence and uniqueness of stochastic mean-field equation driven by tempered fractional Brownian motion. Furthermore, combining with the Banach fixed point theorem and the properties of Mittag-Leffler functions, we study the existence and uniqueness of mild solution for a kind of time fractional mean-field stochastic differential equation driven by tempered fractional Brownian motion.