Volume 3, Issue 4
Analysis of a Kind of Stochastic Dynamics Model with Nonlinear Function

Zhimin Li & Tailei Zhang

J. Nonl. Mod. Anal., 3 (2021), pp. 523-546.

Published online: 2022-06

[An open-access article; the PDF is free to any online user.]

Export citation
  • Abstract

In this paper, we establish stochastic differential equations on the basis of a nonlinear deterministic model and study the global dynamics. For the deterministic model, we show that the basic reproduction number $\mathfrak{R}_0$ determines whether there is an endemic outbreak or not: if $\mathfrak{R}_0<1,$ the disease dies out; while if $\mathfrak{R}_0>1,$ the disease persists. For the stochastic model, we provide analytic results regarding the stochastic boundedness, perturbation, permanence and extinction. Finally, some numerical examples are carried out to confirm the analytical results. One of the most interesting findings is that stochastic fluctuations introduced in our stochastic model can suppress disease outbreak, which can provide us some useful control strategies to regulate disease dynamics.

  • AMS Subject Headings

34A30, 34F05, 92B05

  • Copyright

COPYRIGHT: © Global Science Press

  • Email address
  • BibTex
  • RIS
  • TXT
@Article{JNMA-3-523, author = {Li , Zhimin and Zhang , Tailei}, title = {Analysis of a Kind of Stochastic Dynamics Model with Nonlinear Function}, journal = {Journal of Nonlinear Modeling and Analysis}, year = {2022}, volume = {3}, number = {4}, pages = {523--546}, abstract = {

In this paper, we establish stochastic differential equations on the basis of a nonlinear deterministic model and study the global dynamics. For the deterministic model, we show that the basic reproduction number $\mathfrak{R}_0$ determines whether there is an endemic outbreak or not: if $\mathfrak{R}_0<1,$ the disease dies out; while if $\mathfrak{R}_0>1,$ the disease persists. For the stochastic model, we provide analytic results regarding the stochastic boundedness, perturbation, permanence and extinction. Finally, some numerical examples are carried out to confirm the analytical results. One of the most interesting findings is that stochastic fluctuations introduced in our stochastic model can suppress disease outbreak, which can provide us some useful control strategies to regulate disease dynamics.

}, issn = {2562-2862}, doi = {https://doi.org/10.12150/jnma.2021.523}, url = {http://global-sci.org/intro/article_detail/jnma/20682.html} }
TY - JOUR T1 - Analysis of a Kind of Stochastic Dynamics Model with Nonlinear Function AU - Li , Zhimin AU - Zhang , Tailei JO - Journal of Nonlinear Modeling and Analysis VL - 4 SP - 523 EP - 546 PY - 2022 DA - 2022/06 SN - 3 DO - http://doi.org/10.12150/jnma.2021.523 UR - https://global-sci.org/intro/article_detail/jnma/20682.html KW - Nonlinear incidence, Stochastic differential equation, Stationary distribution, Permanence, Extinction. AB -

In this paper, we establish stochastic differential equations on the basis of a nonlinear deterministic model and study the global dynamics. For the deterministic model, we show that the basic reproduction number $\mathfrak{R}_0$ determines whether there is an endemic outbreak or not: if $\mathfrak{R}_0<1,$ the disease dies out; while if $\mathfrak{R}_0>1,$ the disease persists. For the stochastic model, we provide analytic results regarding the stochastic boundedness, perturbation, permanence and extinction. Finally, some numerical examples are carried out to confirm the analytical results. One of the most interesting findings is that stochastic fluctuations introduced in our stochastic model can suppress disease outbreak, which can provide us some useful control strategies to regulate disease dynamics.

Li , Zhimin and Zhang , Tailei. (2022). Analysis of a Kind of Stochastic Dynamics Model with Nonlinear Function. Journal of Nonlinear Modeling and Analysis. 3 (4). 523-546. doi:10.12150/jnma.2021.523
Copy to clipboard
The citation has been copied to your clipboard