J. Nonl. Mod. Anal., 3 (2021), pp. 321-334.
Published online: 2021-04
[An open-access article; the PDF is free to any online user.]
Cited by
- BibTex
- RIS
- TXT
In this paper, we are concerned with the dynamics of a diffusive predator-prey model that incorporates the functional response concerning hunting cooperation. First, we investigate the stability of the semi-trivial steady state. Then, we investigate the influence of the diffusive rates on the stability of the positive constant steady state. It is shown that there exists diffusion-driven Turing instability when the diffusive rate of the predator is smaller than the critical value, which is dependent on the diffusive rate of the prey, and the semi-trivial steady state and the positive constant steady state are both locally asymptotically stable when the diffusive rate of the predator is larger than the critical value. Finally, the nonexistence of nonconstant steady states is discussed.
}, issn = {2562-2862}, doi = {https://doi.org/10.12150/jnma.2021.321}, url = {http://global-sci.org/intro/article_detail/jnma/18793.html} }In this paper, we are concerned with the dynamics of a diffusive predator-prey model that incorporates the functional response concerning hunting cooperation. First, we investigate the stability of the semi-trivial steady state. Then, we investigate the influence of the diffusive rates on the stability of the positive constant steady state. It is shown that there exists diffusion-driven Turing instability when the diffusive rate of the predator is smaller than the critical value, which is dependent on the diffusive rate of the prey, and the semi-trivial steady state and the positive constant steady state are both locally asymptotically stable when the diffusive rate of the predator is larger than the critical value. Finally, the nonexistence of nonconstant steady states is discussed.