J. Nonl. Mod. Anal., 3 (2021), pp. 193-207.
Published online: 2021-04
[An open-access article; the PDF is free to any online user.]
Cited by
- BibTex
- RIS
- TXT
In this paper, we employ the theory of the planar dynamical system to investigate the dynamical behavior and bifurcations of solutions of the traveling systems of the $D(m,n)$ equation. On the basis of the previous work of the reference [17], we obtain the solitary cusp waves solutions (peakons and valleyons), breaking wave solutions (compactons) and other periodic cusp wave solutions. Morever, we make a summary of exact traveling wave solutions to the $D(m,n)$ system including all the solutions which have been found from the references [4, 14, 17].
}, issn = {2562-2862}, doi = {https://doi.org/10.12150/jnma.2021.193}, url = {http://global-sci.org/intro/article_detail/jnma/18786.html} }In this paper, we employ the theory of the planar dynamical system to investigate the dynamical behavior and bifurcations of solutions of the traveling systems of the $D(m,n)$ equation. On the basis of the previous work of the reference [17], we obtain the solitary cusp waves solutions (peakons and valleyons), breaking wave solutions (compactons) and other periodic cusp wave solutions. Morever, we make a summary of exact traveling wave solutions to the $D(m,n)$ system including all the solutions which have been found from the references [4, 14, 17].