- Journal Home
- Volume 43 - 2025
- Volume 42 - 2024
- Volume 41 - 2023
- Volume 40 - 2022
- Volume 39 - 2021
- Volume 38 - 2020
- Volume 37 - 2019
- Volume 36 - 2018
- Volume 35 - 2017
- Volume 34 - 2016
- Volume 33 - 2015
- Volume 32 - 2014
- Volume 31 - 2013
- Volume 30 - 2012
- Volume 29 - 2011
- Volume 28 - 2010
- Volume 27 - 2009
- Volume 26 - 2008
- Volume 25 - 2007
- Volume 24 - 2006
- Volume 23 - 2005
- Volume 22 - 2004
- Volume 21 - 2003
- Volume 20 - 2002
- Volume 19 - 2001
- Volume 18 - 2000
- Volume 17 - 1999
- Volume 16 - 1998
- Volume 15 - 1997
- Volume 14 - 1996
- Volume 13 - 1995
- Volume 12 - 1994
- Volume 11 - 1993
- Volume 10 - 1992
- Volume 9 - 1991
- Volume 8 - 1990
- Volume 7 - 1989
- Volume 6 - 1988
- Volume 5 - 1987
- Volume 4 - 1986
- Volume 3 - 1985
- Volume 2 - 1984
- Volume 1 - 1983
Cited by
- BibTex
- RIS
- TXT
In this paper, we establish the oracle inequalities of highly corrupted linear observations $b = Ax_0 + f_0 + e ∈ \mathbb{R}^m.$ Here the vector $x_0 ∈ \mathbb{R}^n$ with $n ≫ m$ is a (approximately) sparse signal and $f_0 ∈ \mathbb{R}^m$ is a sparse error vector with nonzero entries that can be possible infinitely large, $e ∼\mathcal{ N} (0, σ^2 I_m)$ represents the Gaussian random noise vector. We extend the oracle inequality $||\hat{x}-x_0||^2_2\lesssim \sum_i{\rm min}\{|x_0(i)|^2,\sigma^2\}$ for Dantzig selector and Lasso models in [E.J. Candès and T. Tao, Ann. Statist., 35 (2007), 2313–2351] and [T.T. Cai, L. Wang, and G. Xu, IEEE Trans. Inf. Theory, 56 (2010), 3516–3522] to $||\hat{x}-x_0||^2_2+||\hat{f}-f_0||^2_2\lesssim \sum_i{\rm min}\{|x_0(i)|^2,\sigma^2\}+\sum_j{\rm min}\{|\lambda f_0(j)|^2,\sigma^2\}$ for the extended Dantzig selector and Lasso models. Here $(\hat{x}, \hat{f})$ is the solution of the extended model, and $λ > 0$ is the balance parameter between $||x||_1$ and $||f||_1$ i.e. $||x||_1+\lambda||f||_1.$
}, issn = {1991-7139}, doi = {https://doi.org/10.4208/jcm.2310-m2022-0282}, url = {http://global-sci.org/intro/article_detail/jcm/23546.html} }In this paper, we establish the oracle inequalities of highly corrupted linear observations $b = Ax_0 + f_0 + e ∈ \mathbb{R}^m.$ Here the vector $x_0 ∈ \mathbb{R}^n$ with $n ≫ m$ is a (approximately) sparse signal and $f_0 ∈ \mathbb{R}^m$ is a sparse error vector with nonzero entries that can be possible infinitely large, $e ∼\mathcal{ N} (0, σ^2 I_m)$ represents the Gaussian random noise vector. We extend the oracle inequality $||\hat{x}-x_0||^2_2\lesssim \sum_i{\rm min}\{|x_0(i)|^2,\sigma^2\}$ for Dantzig selector and Lasso models in [E.J. Candès and T. Tao, Ann. Statist., 35 (2007), 2313–2351] and [T.T. Cai, L. Wang, and G. Xu, IEEE Trans. Inf. Theory, 56 (2010), 3516–3522] to $||\hat{x}-x_0||^2_2+||\hat{f}-f_0||^2_2\lesssim \sum_i{\rm min}\{|x_0(i)|^2,\sigma^2\}+\sum_j{\rm min}\{|\lambda f_0(j)|^2,\sigma^2\}$ for the extended Dantzig selector and Lasso models. Here $(\hat{x}, \hat{f})$ is the solution of the extended model, and $λ > 0$ is the balance parameter between $||x||_1$ and $||f||_1$ i.e. $||x||_1+\lambda||f||_1.$