Volume 5, Issue 4
Improving Numerical Accuracy in a Regularized Barotropic Vorticity Model of
Geophysical Flow

Zichen Deng

DOI:

Int. J. Numer. Anal. Mod. B, 5 (2014), pp. 317-338

Published online: 2014-05

Preview Purchase PDF 63 1600
Export citation
  • Abstract

We study the BV-α-Deconvolution model. It is a family of regularizations of the Barotropic Vorticity (BV) model that generalize the BV-α model and improve its accuracy. A both unconditionally stable and optimally convergent scheme for the BV-α-Deconvolution model is proposed and we show that it is O(α^{2N+2}), where N is the deconvolution order, whereas the BV-α model is at most second order accurate. We perform numerical simulations to confirm the predicted convergence rates and test the model in the traditional double gyre wind experiment. For the latter test, we show that the BV-α-Deconvolution model can retrieve the expected high resolution pattern being more accurate for larger values of deconvolution order.

  • Keywords

Barotropic vorticity model regularizations turbulence geophysical flow

  • AMS Subject Headings

65M12 65M60 76D99 76U99

  • Copyright

COPYRIGHT: © Global Science Press

  • Email address
  • BibTex
  • RIS
  • TXT
@Article{IJNAMB-5-317, author = {Zichen Deng}, title = { Improving Numerical Accuracy in a Regularized Barotropic Vorticity Model of
Geophysical Flow}, journal = {International Journal of Numerical Analysis Modeling Series B}, year = {2014}, volume = {5}, number = {4}, pages = {317--338}, abstract = {We study the BV-α-Deconvolution model. It is a family of regularizations of the Barotropic Vorticity (BV) model that generalize the BV-α model and improve its accuracy. A both unconditionally stable and optimally convergent scheme for the BV-α-Deconvolution model is proposed and we show that it is O(α^{2N+2}), where N is the deconvolution order, whereas the BV-α model is at most second order accurate. We perform numerical simulations to confirm the predicted convergence rates and test the model in the traditional double gyre wind experiment. For the latter test, we show that the BV-α-Deconvolution model can retrieve the expected high resolution pattern being more accurate for larger values of deconvolution order.}, issn = {}, doi = {https://doi.org/}, url = {http://global-sci.org/intro/article_detail/ijnamb/237.html} }
TY - JOUR T1 - Improving Numerical Accuracy in a Regularized Barotropic Vorticity Model of
Geophysical Flow AU - Zichen Deng JO - International Journal of Numerical Analysis Modeling Series B VL - 4 SP - 317 EP - 338 PY - 2014 DA - 2014/05 SN - 5 DO - http://doi.org/ UR - https://global-sci.org/intro/article_detail/ijnamb/237.html KW - Barotropic vorticity model KW - regularizations KW - turbulence KW - geophysical flow AB - We study the BV-α-Deconvolution model. It is a family of regularizations of the Barotropic Vorticity (BV) model that generalize the BV-α model and improve its accuracy. A both unconditionally stable and optimally convergent scheme for the BV-α-Deconvolution model is proposed and we show that it is O(α^{2N+2}), where N is the deconvolution order, whereas the BV-α model is at most second order accurate. We perform numerical simulations to confirm the predicted convergence rates and test the model in the traditional double gyre wind experiment. For the latter test, we show that the BV-α-Deconvolution model can retrieve the expected high resolution pattern being more accurate for larger values of deconvolution order.
Zichen Deng. (1970). Improving Numerical Accuracy in a Regularized Barotropic Vorticity Model of
Geophysical Flow. International Journal of Numerical Analysis Modeling Series B. 5 (4). 317-338. doi:
Copy to clipboard
The citation has been copied to your clipboard