Volume 5, Issue 1
Accelerating Preconditioned Iterative Linear Solvers on GPU

Hui Liu ,  Zhangxin Chen and Bo Yang

Int. J. Numer. Anal. Mod. B, 5 (2014), pp. 136-146

Preview Full PDF BiBTex 224 528
  • Abstract

Linear systems are required to solve in many scientific applications and the solution of these systems often dominates the total running time. In this paper, we introduce our work on developing parallel linear solvers and preconditioners for solving large sparse linear systems using NVIDIA GPUs. We develop a new sparse matrix-vector multiplication kernel and a sparse BLAS library for GPUs. Based on the BLAS library, several Krylov subspace linear solvers, and algebraic multi-grid (AMG) solvers and commonly used preconditioners are developed, including GMRES, CG, BICGSTAB, ORTHOMIN, classical AMG solver, polynomial preconditioner, ILU(k) and ILUT preconditioner, and domain decomposition preconditioner. Numerical experiments show that these linear solvers and preconditioners are efficient for solving the large linear systems.

  • History

Published online: 2014-05

  • Keywords

  • AMS Subject Headings

  • Cited by