- Journal Home
- Volume 22 - 2025
- Volume 21 - 2024
- Volume 20 - 2023
- Volume 19 - 2022
- Volume 18 - 2021
- Volume 17 - 2020
- Volume 16 - 2019
- Volume 15 - 2018
- Volume 14 - 2017
- Volume 13 - 2016
- Volume 12 - 2015
- Volume 11 - 2014
- Volume 10 - 2013
- Volume 9 - 2012
- Volume 8 - 2011
- Volume 7 - 2010
- Volume 6 - 2009
- Volume 5 - 2008
- Volume 4 - 2007
- Volume 3 - 2006
- Volume 2 - 2005
- Volume 1 - 2004
Basis for the Quadratic Nonconforming Triangular Element of Fortin and Soulie
Cited by
Export citation
- BibTex
- RIS
- TXT
@Article{IJNAM-2-409,
author = {H. Lee and D. Sheen},
title = {Basis for the Quadratic Nonconforming Triangular Element of Fortin and Soulie},
journal = {International Journal of Numerical Analysis and Modeling},
year = {2005},
volume = {2},
number = {4},
pages = {409--421},
abstract = {
A basis for the quadratic ($P_2$) nonconforming element of Fortin and Soulie on triangles is introduced. The local and global interpolation operators are defined. Error estimates of optimal order are derived in both broken energy and $L^2(\Omega)$-norms for second-order elliptic problems. Brief numerical results are also shown.
}, issn = {2617-8710}, doi = {https://doi.org/}, url = {http://global-sci.org/intro/article_detail/ijnam/938.html} }
TY - JOUR
T1 - Basis for the Quadratic Nonconforming Triangular Element of Fortin and Soulie
AU - H. Lee & D. Sheen
JO - International Journal of Numerical Analysis and Modeling
VL - 4
SP - 409
EP - 421
PY - 2005
DA - 2005/02
SN - 2
DO - http://doi.org/
UR - https://global-sci.org/intro/article_detail/ijnam/938.html
KW - quadratic nonconforming element, finite element method, error analysis.
AB -
A basis for the quadratic ($P_2$) nonconforming element of Fortin and Soulie on triangles is introduced. The local and global interpolation operators are defined. Error estimates of optimal order are derived in both broken energy and $L^2(\Omega)$-norms for second-order elliptic problems. Brief numerical results are also shown.
H. Lee and D. Sheen. (2005). Basis for the Quadratic Nonconforming Triangular Element of Fortin and Soulie.
International Journal of Numerical Analysis and Modeling. 2 (4).
409-421.
doi:
Copy to clipboard