- Journal Home
- Volume 22 - 2025
- Volume 21 - 2024
- Volume 20 - 2023
- Volume 19 - 2022
- Volume 18 - 2021
- Volume 17 - 2020
- Volume 16 - 2019
- Volume 15 - 2018
- Volume 14 - 2017
- Volume 13 - 2016
- Volume 12 - 2015
- Volume 11 - 2014
- Volume 10 - 2013
- Volume 9 - 2012
- Volume 8 - 2011
- Volume 7 - 2010
- Volume 6 - 2009
- Volume 5 - 2008
- Volume 4 - 2007
- Volume 3 - 2006
- Volume 2 - 2005
- Volume 1 - 2004
Cited by
- BibTex
- RIS
- TXT
In this article, we demonstrate how one can improve the numerical solutions of singularly perturbed problems involving multiple boundary layers by using a combination of analytic and numerical tools. Incorporating the structures of boundary layers into finite element spaces can improve the accuracy of approximate solutions and result in significant simplifications. We discuss here convection-diffusion equations in the case where both ordinary and parabolic boundary layers are present.
}, issn = {2617-8710}, doi = {https://doi.org/}, url = {http://global-sci.org/intro/article_detail/ijnam/937.html} }In this article, we demonstrate how one can improve the numerical solutions of singularly perturbed problems involving multiple boundary layers by using a combination of analytic and numerical tools. Incorporating the structures of boundary layers into finite element spaces can improve the accuracy of approximate solutions and result in significant simplifications. We discuss here convection-diffusion equations in the case where both ordinary and parabolic boundary layers are present.