- Journal Home
- Volume 22 - 2025
- Volume 21 - 2024
- Volume 20 - 2023
- Volume 19 - 2022
- Volume 18 - 2021
- Volume 17 - 2020
- Volume 16 - 2019
- Volume 15 - 2018
- Volume 14 - 2017
- Volume 13 - 2016
- Volume 12 - 2015
- Volume 11 - 2014
- Volume 10 - 2013
- Volume 9 - 2012
- Volume 8 - 2011
- Volume 7 - 2010
- Volume 6 - 2009
- Volume 5 - 2008
- Volume 4 - 2007
- Volume 3 - 2006
- Volume 2 - 2005
- Volume 1 - 2004
Cited by
- BibTex
- RIS
- TXT
We consider the discretization in time of a parabolic equation, using a representation of the solution as an integral along a smooth curve in the complex left half plane. The integral is then evaluated to high accuracy by a quadrature rule. This reduces the problem to a finite set of elliptic equations, which may be solved in parallel. The procedure is combined with finite element discretization in the spatial variables. The method is also applied to some parabolic type evolution equations with memory.
}, issn = {2617-8710}, doi = {https://doi.org/}, url = {http://global-sci.org/intro/article_detail/ijnam/922.html} }We consider the discretization in time of a parabolic equation, using a representation of the solution as an integral along a smooth curve in the complex left half plane. The integral is then evaluated to high accuracy by a quadrature rule. This reduces the problem to a finite set of elliptic equations, which may be solved in parallel. The procedure is combined with finite element discretization in the spatial variables. The method is also applied to some parabolic type evolution equations with memory.