- Journal Home
- Volume 21 - 2024
- Volume 20 - 2023
- Volume 19 - 2022
- Volume 18 - 2021
- Volume 17 - 2020
- Volume 16 - 2019
- Volume 15 - 2018
- Volume 14 - 2017
- Volume 13 - 2016
- Volume 12 - 2015
- Volume 11 - 2014
- Volume 10 - 2013
- Volume 9 - 2012
- Volume 8 - 2011
- Volume 7 - 2010
- Volume 6 - 2009
- Volume 5 - 2008
- Volume 4 - 2007
- Volume 3 - 2006
- Volume 2 - 2005
- Volume 1 - 2004
Locating Natural Superconvergent Points of Finite Element Methods in 3D
Cited by
Export citation
- BibTex
- RIS
- TXT
@Article{IJNAM-2-19,
author = {Z. Zhang and R. Lin},
title = {Locating Natural Superconvergent Points of Finite Element Methods in 3D},
journal = {International Journal of Numerical Analysis and Modeling},
year = {2005},
volume = {2},
number = {1},
pages = {19--30},
abstract = {
In [20], we analytically identified natural superconvergent points of function values and gradients for several popular three-dimensional polynomial finite elements via an orthogonal decomposition. This paper focuses on the detailed process for determining the superconvergent points of pentahedral and tetrahedral elements.
}, issn = {2617-8710}, doi = {https://doi.org/}, url = {http://global-sci.org/intro/article_detail/ijnam/917.html} }
TY - JOUR
T1 - Locating Natural Superconvergent Points of Finite Element Methods in 3D
AU - Z. Zhang & R. Lin
JO - International Journal of Numerical Analysis and Modeling
VL - 1
SP - 19
EP - 30
PY - 2005
DA - 2005/02
SN - 2
DO - http://doi.org/
UR - https://global-sci.org/intro/article_detail/ijnam/917.html
KW - finite element methods, three-dimensional problems, natural superconvergence, pentahedral elements and tetrahedral elements.
AB -
In [20], we analytically identified natural superconvergent points of function values and gradients for several popular three-dimensional polynomial finite elements via an orthogonal decomposition. This paper focuses on the detailed process for determining the superconvergent points of pentahedral and tetrahedral elements.
Z. Zhang and R. Lin. (2005). Locating Natural Superconvergent Points of Finite Element Methods in 3D.
International Journal of Numerical Analysis and Modeling. 2 (1).
19-30.
doi:
Copy to clipboard