- Journal Home
- Volume 22 - 2025
- Volume 21 - 2024
- Volume 20 - 2023
- Volume 19 - 2022
- Volume 18 - 2021
- Volume 17 - 2020
- Volume 16 - 2019
- Volume 15 - 2018
- Volume 14 - 2017
- Volume 13 - 2016
- Volume 12 - 2015
- Volume 11 - 2014
- Volume 10 - 2013
- Volume 9 - 2012
- Volume 8 - 2011
- Volume 7 - 2010
- Volume 6 - 2009
- Volume 5 - 2008
- Volume 4 - 2007
- Volume 3 - 2006
- Volume 2 - 2005
- Volume 1 - 2004
Cited by
- BibTex
- RIS
- TXT
In this paper we analyze several first-order systems of Oseen-type equations that are obtained from the time-dependent incompressible Navier-Stokes equations after introducing the additional vorticity and possibly total pressure variables, time-discretizing the time derivative and linearizing the non-linear terms. We apply the [$L^2$, $L^2$, $L^2$] least-squares finite element scheme to approximate the solutions of these Oseen-type equations assuming homogeneous velocity boundary conditions. All of the associated least-squares energy functionals are defined to be the sum of squared $L^2$ norms of the residual equations over an appropriate products space. We first prove that the homogeneous least-squares functionals are coercive in the $H^1 \times L^2 \times L^2$ norm for the velocity, vorticity, and pressure, but only continuous in the $H^1 \times H^1 \times H^1$ norm for these variables. Although equivalence between the homogeneous least-squares functionals and one of the above two product norms is not achieved, by using these a priori estimates and additional finite element analysis we are nevertheless able to prove that the least-squares method produces an optimal rate of convergence in the $H^1$ norm for velocity and suboptimal rate of convergence in the $L^2$ norm for vorticity and pressure. Numerical experiments with various Reynolds numbers that support the theoretical error estimates are presented. In addition, numerical solutions to the time-dependent incompressible Navier-Stokes problem are given to demonstrate the accuracy of the semi-discrete [$L^2, L^2, L^2$] least-squares finite element approach.
}, issn = {2617-8710}, doi = {https://doi.org/}, url = {http://global-sci.org/intro/article_detail/ijnam/869.html} }In this paper we analyze several first-order systems of Oseen-type equations that are obtained from the time-dependent incompressible Navier-Stokes equations after introducing the additional vorticity and possibly total pressure variables, time-discretizing the time derivative and linearizing the non-linear terms. We apply the [$L^2$, $L^2$, $L^2$] least-squares finite element scheme to approximate the solutions of these Oseen-type equations assuming homogeneous velocity boundary conditions. All of the associated least-squares energy functionals are defined to be the sum of squared $L^2$ norms of the residual equations over an appropriate products space. We first prove that the homogeneous least-squares functionals are coercive in the $H^1 \times L^2 \times L^2$ norm for the velocity, vorticity, and pressure, but only continuous in the $H^1 \times H^1 \times H^1$ norm for these variables. Although equivalence between the homogeneous least-squares functionals and one of the above two product norms is not achieved, by using these a priori estimates and additional finite element analysis we are nevertheless able to prove that the least-squares method produces an optimal rate of convergence in the $H^1$ norm for velocity and suboptimal rate of convergence in the $L^2$ norm for vorticity and pressure. Numerical experiments with various Reynolds numbers that support the theoretical error estimates are presented. In addition, numerical solutions to the time-dependent incompressible Navier-Stokes problem are given to demonstrate the accuracy of the semi-discrete [$L^2, L^2, L^2$] least-squares finite element approach.