- Journal Home
- Volume 22 - 2025
- Volume 21 - 2024
- Volume 20 - 2023
- Volume 19 - 2022
- Volume 18 - 2021
- Volume 17 - 2020
- Volume 16 - 2019
- Volume 15 - 2018
- Volume 14 - 2017
- Volume 13 - 2016
- Volume 12 - 2015
- Volume 11 - 2014
- Volume 10 - 2013
- Volume 9 - 2012
- Volume 8 - 2011
- Volume 7 - 2010
- Volume 6 - 2009
- Volume 5 - 2008
- Volume 4 - 2007
- Volume 3 - 2006
- Volume 2 - 2005
- Volume 1 - 2004
Cited by
- BibTex
- RIS
- TXT
Determining accurate statistical information about outputs from ensembles of realizations is not generally possible whenever the input-output map involves the (computational) solution of systems of nonlinear partial differential equations (PDEs). This is due to the high cost of effecting each realization. Recently, in applications such as control and optimization that also require multiple solutions of PDEs, there has been much interest in reduced-order models (ROMs) that greatly reduce the cost of determining approximate solutions. We explore the use of ROMs for determining outputs that depend on solutions of stochastic PDEs. One is then able to cheaply determine much larger ensembles, but this increase in sample size is countered by the lower fidelity of the ROM used to approximate the state. In the contexts of proper orthogonal decomposition-based ROMs, we explore these counteracting effects on the accuracy of statistical information about outputs determined from ensembles of solutions.
}, issn = {2617-8710}, doi = {https://doi.org/}, url = {http://global-sci.org/intro/article_detail/ijnam/867.html} }Determining accurate statistical information about outputs from ensembles of realizations is not generally possible whenever the input-output map involves the (computational) solution of systems of nonlinear partial differential equations (PDEs). This is due to the high cost of effecting each realization. Recently, in applications such as control and optimization that also require multiple solutions of PDEs, there has been much interest in reduced-order models (ROMs) that greatly reduce the cost of determining approximate solutions. We explore the use of ROMs for determining outputs that depend on solutions of stochastic PDEs. One is then able to cheaply determine much larger ensembles, but this increase in sample size is countered by the lower fidelity of the ROM used to approximate the state. In the contexts of proper orthogonal decomposition-based ROMs, we explore these counteracting effects on the accuracy of statistical information about outputs determined from ensembles of solutions.