- Journal Home
- Volume 22 - 2025
- Volume 21 - 2024
- Volume 20 - 2023
- Volume 19 - 2022
- Volume 18 - 2021
- Volume 17 - 2020
- Volume 16 - 2019
- Volume 15 - 2018
- Volume 14 - 2017
- Volume 13 - 2016
- Volume 12 - 2015
- Volume 11 - 2014
- Volume 10 - 2013
- Volume 9 - 2012
- Volume 8 - 2011
- Volume 7 - 2010
- Volume 6 - 2009
- Volume 5 - 2008
- Volume 4 - 2007
- Volume 3 - 2006
- Volume 2 - 2005
- Volume 1 - 2004
Cited by
- BibTex
- RIS
- TXT
It has been demonstrated that the ordinary boundary layer elements play an essential role in the finite element approximations for singularly perturbed problems producing ordinary boundary layers. Here we revise the element so that it has a small compact support and hence the resulting linear system becomes sparse, more precisely, block tridiagonal. We prove the validity of the revised element for some singularly perturbed convection-diffusion equations via numerical simulations and via the $H^1$-approximation error analysis. Furthermore due to the compact structure of the boundary layer we are able to prove the $L^2$-stability analysis of the scheme and derive the $L^2$-error approximations.
}, issn = {2617-8710}, doi = {https://doi.org/}, url = {http://global-sci.org/intro/article_detail/ijnam/835.html} }It has been demonstrated that the ordinary boundary layer elements play an essential role in the finite element approximations for singularly perturbed problems producing ordinary boundary layers. Here we revise the element so that it has a small compact support and hence the resulting linear system becomes sparse, more precisely, block tridiagonal. We prove the validity of the revised element for some singularly perturbed convection-diffusion equations via numerical simulations and via the $H^1$-approximation error analysis. Furthermore due to the compact structure of the boundary layer we are able to prove the $L^2$-stability analysis of the scheme and derive the $L^2$-error approximations.