- Journal Home
- Volume 22 - 2025
- Volume 21 - 2024
- Volume 20 - 2023
- Volume 19 - 2022
- Volume 18 - 2021
- Volume 17 - 2020
- Volume 16 - 2019
- Volume 15 - 2018
- Volume 14 - 2017
- Volume 13 - 2016
- Volume 12 - 2015
- Volume 11 - 2014
- Volume 10 - 2013
- Volume 9 - 2012
- Volume 8 - 2011
- Volume 7 - 2010
- Volume 6 - 2009
- Volume 5 - 2008
- Volume 4 - 2007
- Volume 3 - 2006
- Volume 2 - 2005
- Volume 1 - 2004
Cited by
- BibTex
- RIS
- TXT
In this article, we are interested in the mathematical modeling of singular electromagnetic fields, in a non-convex polyhedral domain. We first describe the local trace (i. e. defined on a face) of the normal derivative of an $L^2$ function, with $L^2$ Laplacian. Among other things, this allows us to describe dual singularities of the Laplace problem with homogeneous Neumann boundary condition. We then provide generalized integration by parts formulae for the Laplace, divergence and curl operators. With the help of these results, one can split electromagnetic fields into regular and singular parts, which are then characterized. We also study the particular case of divergence-free and curl-free fields, and provide non-orthogonal decompositions that are numerically computable.
}, issn = {2617-8710}, doi = {https://doi.org/}, url = {http://global-sci.org/intro/article_detail/ijnam/823.html} }In this article, we are interested in the mathematical modeling of singular electromagnetic fields, in a non-convex polyhedral domain. We first describe the local trace (i. e. defined on a face) of the normal derivative of an $L^2$ function, with $L^2$ Laplacian. Among other things, this allows us to describe dual singularities of the Laplace problem with homogeneous Neumann boundary condition. We then provide generalized integration by parts formulae for the Laplace, divergence and curl operators. With the help of these results, one can split electromagnetic fields into regular and singular parts, which are then characterized. We also study the particular case of divergence-free and curl-free fields, and provide non-orthogonal decompositions that are numerically computable.