- Journal Home
- Volume 22 - 2025
- Volume 21 - 2024
- Volume 20 - 2023
- Volume 19 - 2022
- Volume 18 - 2021
- Volume 17 - 2020
- Volume 16 - 2019
- Volume 15 - 2018
- Volume 14 - 2017
- Volume 13 - 2016
- Volume 12 - 2015
- Volume 11 - 2014
- Volume 10 - 2013
- Volume 9 - 2012
- Volume 8 - 2011
- Volume 7 - 2010
- Volume 6 - 2009
- Volume 5 - 2008
- Volume 4 - 2007
- Volume 3 - 2006
- Volume 2 - 2005
- Volume 1 - 2004
Cited by
- BibTex
- RIS
- TXT
We consider in this paper the homogeneous 2-D wave equation defined on $\Omega \subset \mathbb{R}^2$. Using the Hilbert Uniqueness Method, one may associate to a suitable fixed subset $\omega \subset \Omega$, the control $v_{\omega}$ of minimal $L^2 (\omega \times (0, T))$-norm which drives to rest the system at a time $T>0$ large enough. We address the question of the optimal position of $\omega$ which minimize the functional $J : \omega \rightarrow ||v_{\omega}||_{L^2(\omega \times (0,T))}$. Assuming $\omega \in C^1(\Omega)$, we express the shape derivative of $J$ as a curvilinear integral on $∂\omega \times (0,T)$ independently of any adjoint solution. This expression leads to a descent direction and permits to define a gradient algorithm efficiently initialized by the topological derivative associated to $J$. The numerical approximation of the problem is discussed and numerical experiments are presented in the framework of the level set approach. We also investigate the well-posedness of the problem by considering its relaxation.
}, issn = {2617-8710}, doi = {https://doi.org/}, url = {http://global-sci.org/intro/article_detail/ijnam/815.html} }We consider in this paper the homogeneous 2-D wave equation defined on $\Omega \subset \mathbb{R}^2$. Using the Hilbert Uniqueness Method, one may associate to a suitable fixed subset $\omega \subset \Omega$, the control $v_{\omega}$ of minimal $L^2 (\omega \times (0, T))$-norm which drives to rest the system at a time $T>0$ large enough. We address the question of the optimal position of $\omega$ which minimize the functional $J : \omega \rightarrow ||v_{\omega}||_{L^2(\omega \times (0,T))}$. Assuming $\omega \in C^1(\Omega)$, we express the shape derivative of $J$ as a curvilinear integral on $∂\omega \times (0,T)$ independently of any adjoint solution. This expression leads to a descent direction and permits to define a gradient algorithm efficiently initialized by the topological derivative associated to $J$. The numerical approximation of the problem is discussed and numerical experiments are presented in the framework of the level set approach. We also investigate the well-posedness of the problem by considering its relaxation.