- Journal Home
- Volume 22 - 2025
- Volume 21 - 2024
- Volume 20 - 2023
- Volume 19 - 2022
- Volume 18 - 2021
- Volume 17 - 2020
- Volume 16 - 2019
- Volume 15 - 2018
- Volume 14 - 2017
- Volume 13 - 2016
- Volume 12 - 2015
- Volume 11 - 2014
- Volume 10 - 2013
- Volume 9 - 2012
- Volume 8 - 2011
- Volume 7 - 2010
- Volume 6 - 2009
- Volume 5 - 2008
- Volume 4 - 2007
- Volume 3 - 2006
- Volume 2 - 2005
- Volume 1 - 2004
Cited by
- BibTex
- RIS
- TXT
A new finite volume method for solving the Stokes equations is developed in this paper. The finite volume method makes use of the $BDM_1$ mixed element in approximating the velocity unknown, and consequently, the finite volume solution features a full satisfaction of the divergence-free constraint as required for the exact solution. Optimal-order error estimates are established for the corresponding finite volume solutions in various Sobolev norms. Some preliminary numerical experiments are conducted and presented in the paper. In particular, a post-processing procedure was numerically investigated for the pressure approximation. The result shows a superconvergence for a local averaging post-processing method.
}, issn = {2617-8710}, doi = {https://doi.org/}, url = {http://global-sci.org/intro/article_detail/ijnam/720.html} }A new finite volume method for solving the Stokes equations is developed in this paper. The finite volume method makes use of the $BDM_1$ mixed element in approximating the velocity unknown, and consequently, the finite volume solution features a full satisfaction of the divergence-free constraint as required for the exact solution. Optimal-order error estimates are established for the corresponding finite volume solutions in various Sobolev norms. Some preliminary numerical experiments are conducted and presented in the paper. In particular, a post-processing procedure was numerically investigated for the pressure approximation. The result shows a superconvergence for a local averaging post-processing method.