- Journal Home
- Volume 22 - 2025
- Volume 21 - 2024
- Volume 20 - 2023
- Volume 19 - 2022
- Volume 18 - 2021
- Volume 17 - 2020
- Volume 16 - 2019
- Volume 15 - 2018
- Volume 14 - 2017
- Volume 13 - 2016
- Volume 12 - 2015
- Volume 11 - 2014
- Volume 10 - 2013
- Volume 9 - 2012
- Volume 8 - 2011
- Volume 7 - 2010
- Volume 6 - 2009
- Volume 5 - 2008
- Volume 4 - 2007
- Volume 3 - 2006
- Volume 2 - 2005
- Volume 1 - 2004
Cited by
- BibTex
- RIS
- TXT
Simulations of the localization of certain small electromagnetic inhomogeneities, in a three-dimensional bounded domain, are performed by making use of a framework recently introduced by the author and of a non-standard discretization process of this domain. This framework is based on a limit model in electric field and on the combination of a limit perturbation model in the tangential boundary trace of the curl of the electric field, with a Current Projection method or an Inverse Fourier method. As opposed to our recent paper relating to this framework and to experiments requiring the usual discretization process of the domain, inhomogeneities that are one order of magnitude smaller are numerically localized here.
}, issn = {2617-8710}, doi = {https://doi.org/}, url = {http://global-sci.org/intro/article_detail/ijnam/716.html} }Simulations of the localization of certain small electromagnetic inhomogeneities, in a three-dimensional bounded domain, are performed by making use of a framework recently introduced by the author and of a non-standard discretization process of this domain. This framework is based on a limit model in electric field and on the combination of a limit perturbation model in the tangential boundary trace of the curl of the electric field, with a Current Projection method or an Inverse Fourier method. As opposed to our recent paper relating to this framework and to experiments requiring the usual discretization process of the domain, inhomogeneities that are one order of magnitude smaller are numerically localized here.