- Journal Home
- Volume 22 - 2025
- Volume 21 - 2024
- Volume 20 - 2023
- Volume 19 - 2022
- Volume 18 - 2021
- Volume 17 - 2020
- Volume 16 - 2019
- Volume 15 - 2018
- Volume 14 - 2017
- Volume 13 - 2016
- Volume 12 - 2015
- Volume 11 - 2014
- Volume 10 - 2013
- Volume 9 - 2012
- Volume 8 - 2011
- Volume 7 - 2010
- Volume 6 - 2009
- Volume 5 - 2008
- Volume 4 - 2007
- Volume 3 - 2006
- Volume 2 - 2005
- Volume 1 - 2004
Cited by
- BibTex
- RIS
- TXT
A finite element method for elasticity systems with discontinuities in the coefficients and the flux across an arbitrary interface is proposed in this paper. The method is based on a Cartesian mesh with local modifications to the mesh. The total degrees of the freedom of the finite element method remains the same as that of the Cartesian mesh. The local modifications lead to a quasi-uniform body-fitted mesh from the original Cartesian mesh. The standard finite element theory and implementation are applicable. Numerical examples that involve discontinuous material coefficients and non-homogeneous jump in the flux across the interface demonstrate the efficiency of the proposed method.
}, issn = {2617-8710}, doi = {https://doi.org/}, url = {http://global-sci.org/intro/article_detail/ijnam/681.html} }A finite element method for elasticity systems with discontinuities in the coefficients and the flux across an arbitrary interface is proposed in this paper. The method is based on a Cartesian mesh with local modifications to the mesh. The total degrees of the freedom of the finite element method remains the same as that of the Cartesian mesh. The local modifications lead to a quasi-uniform body-fitted mesh from the original Cartesian mesh. The standard finite element theory and implementation are applicable. Numerical examples that involve discontinuous material coefficients and non-homogeneous jump in the flux across the interface demonstrate the efficiency of the proposed method.