- Journal Home
- Volume 22 - 2025
- Volume 21 - 2024
- Volume 20 - 2023
- Volume 19 - 2022
- Volume 18 - 2021
- Volume 17 - 2020
- Volume 16 - 2019
- Volume 15 - 2018
- Volume 14 - 2017
- Volume 13 - 2016
- Volume 12 - 2015
- Volume 11 - 2014
- Volume 10 - 2013
- Volume 9 - 2012
- Volume 8 - 2011
- Volume 7 - 2010
- Volume 6 - 2009
- Volume 5 - 2008
- Volume 4 - 2007
- Volume 3 - 2006
- Volume 2 - 2005
- Volume 1 - 2004
Cited by
- BibTex
- RIS
- TXT
In this paper, we propose a domain decomposition method with Lagrange multipliers for three-dimensional linear elasticity, based on geometrically non-conforming subdomain partitions. Some appropriate multiplier spaces are presented to deal with the geometrically non-conforming partitions, resulting in a discrete saddle-point system. An augmented technique is introduced, such that the resulting new saddle-point system can be solved by the existing iterative methods. Two simple inexact preconditioners are constructed for the saddle-point system, one for the displacement variable, and the other for the Schur complement associated with the multiplier variable. It is shown that the global preconditioned system has a nearly optimal condition number, which is independent of the large variations of the material parameters across the local interfaces.
}, issn = {2617-8710}, doi = {https://doi.org/}, url = {http://global-sci.org/intro/article_detail/ijnam/679.html} }In this paper, we propose a domain decomposition method with Lagrange multipliers for three-dimensional linear elasticity, based on geometrically non-conforming subdomain partitions. Some appropriate multiplier spaces are presented to deal with the geometrically non-conforming partitions, resulting in a discrete saddle-point system. An augmented technique is introduced, such that the resulting new saddle-point system can be solved by the existing iterative methods. Two simple inexact preconditioners are constructed for the saddle-point system, one for the displacement variable, and the other for the Schur complement associated with the multiplier variable. It is shown that the global preconditioned system has a nearly optimal condition number, which is independent of the large variations of the material parameters across the local interfaces.