- Journal Home
- Volume 22 - 2025
- Volume 21 - 2024
- Volume 20 - 2023
- Volume 19 - 2022
- Volume 18 - 2021
- Volume 17 - 2020
- Volume 16 - 2019
- Volume 15 - 2018
- Volume 14 - 2017
- Volume 13 - 2016
- Volume 12 - 2015
- Volume 11 - 2014
- Volume 10 - 2013
- Volume 9 - 2012
- Volume 8 - 2011
- Volume 7 - 2010
- Volume 6 - 2009
- Volume 5 - 2008
- Volume 4 - 2007
- Volume 3 - 2006
- Volume 2 - 2005
- Volume 1 - 2004
Cited by
- BibTex
- RIS
- TXT
We define a multilevel finite element discretization for a coupled stationary reaction-diffusion system in which each component can be defined on a separate grid. We prove convergence of the scheme and propose residual a-posteriori estimators for the error in the natural energy norm for the system. The estimators are robust in the coefficients of the system. We prove upper and lower bounds and illustrate the theory with numerical experiments.
}, issn = {2617-8710}, doi = {https://doi.org/}, url = {http://global-sci.org/intro/article_detail/ijnam/671.html} }We define a multilevel finite element discretization for a coupled stationary reaction-diffusion system in which each component can be defined on a separate grid. We prove convergence of the scheme and propose residual a-posteriori estimators for the error in the natural energy norm for the system. The estimators are robust in the coefficients of the system. We prove upper and lower bounds and illustrate the theory with numerical experiments.