- Journal Home
- Volume 21 - 2024
- Volume 20 - 2023
- Volume 19 - 2022
- Volume 18 - 2021
- Volume 17 - 2020
- Volume 16 - 2019
- Volume 15 - 2018
- Volume 14 - 2017
- Volume 13 - 2016
- Volume 12 - 2015
- Volume 11 - 2014
- Volume 10 - 2013
- Volume 9 - 2012
- Volume 8 - 2011
- Volume 7 - 2010
- Volume 6 - 2009
- Volume 5 - 2008
- Volume 4 - 2007
- Volume 3 - 2006
- Volume 2 - 2005
- Volume 1 - 2004
Cited by
- BibTex
- RIS
- TXT
This study presents a new finite element approximation for an optimal control problem ($P$) governed by the heat equation and with end-point state constraints. The state constraint set $S$ is assumed to have an empty interior in the state space. We begin with building a new penalty functional where the penalty parameter is an algebraic combination of the mesh size and the time step. Based on it, we establish a discrete optimal control problem ($P_{h\tau}$) without state constraints. With the help of Pontryagin’s maximum principle and by suitably choosing the above-mentioned combination, we successfully derive error estimate between optimal controls of problems ($P$) and ($P_{h\tau}$), in terms of the mesh size and time step.
}, issn = {2617-8710}, doi = {https://doi.org/}, url = {http://global-sci.org/intro/article_detail/ijnam/662.html} }This study presents a new finite element approximation for an optimal control problem ($P$) governed by the heat equation and with end-point state constraints. The state constraint set $S$ is assumed to have an empty interior in the state space. We begin with building a new penalty functional where the penalty parameter is an algebraic combination of the mesh size and the time step. Based on it, we establish a discrete optimal control problem ($P_{h\tau}$) without state constraints. With the help of Pontryagin’s maximum principle and by suitably choosing the above-mentioned combination, we successfully derive error estimate between optimal controls of problems ($P$) and ($P_{h\tau}$), in terms of the mesh size and time step.