- Journal Home
- Volume 22 - 2025
- Volume 21 - 2024
- Volume 20 - 2023
- Volume 19 - 2022
- Volume 18 - 2021
- Volume 17 - 2020
- Volume 16 - 2019
- Volume 15 - 2018
- Volume 14 - 2017
- Volume 13 - 2016
- Volume 12 - 2015
- Volume 11 - 2014
- Volume 10 - 2013
- Volume 9 - 2012
- Volume 8 - 2011
- Volume 7 - 2010
- Volume 6 - 2009
- Volume 5 - 2008
- Volume 4 - 2007
- Volume 3 - 2006
- Volume 2 - 2005
- Volume 1 - 2004
Cited by
- BibTex
- RIS
- TXT
Standard compact scheme or upwind compact scheme have high order accuracy and high resolution, but cannot capture the shock without oscillations. In this paper, modified compact scheme is developed by using an effective shock detector to block upwinding compact scheme to cross the shock, a control function, and an adaptive scheme which uses some WENO flux near the shock. The new scheme makes the original upwinding compact scheme able to capture the shock sharper than WENO and, more important, keep high order accuracy and high resolution in the smooth area which is particularly important for shock, shock boundary layer interaction and shock acoustic interaction. The scheme is robust and has no case-related coefficients.
}, issn = {2617-8710}, doi = {https://doi.org/}, url = {http://global-sci.org/intro/article_detail/ijnam/627.html} }Standard compact scheme or upwind compact scheme have high order accuracy and high resolution, but cannot capture the shock without oscillations. In this paper, modified compact scheme is developed by using an effective shock detector to block upwinding compact scheme to cross the shock, a control function, and an adaptive scheme which uses some WENO flux near the shock. The new scheme makes the original upwinding compact scheme able to capture the shock sharper than WENO and, more important, keep high order accuracy and high resolution in the smooth area which is particularly important for shock, shock boundary layer interaction and shock acoustic interaction. The scheme is robust and has no case-related coefficients.