Volume 9, Issue 1
A Uniformly Optimal-order Estimate for Bilinear Finite Element Method for Transient Advection-diffusion Equations

Q. Lin ,  K. Wang ,  H. Wang and X. Yin

Int. J. Numer. Anal. Mod., 9 (2012), pp. 73-85

Preview Full PDF BiBTex 171 548
  • Abstract

We prove an optimal-order error estimate in a weighted energy norm for bilinear Galerkin finite element method for two-dimensional timedependent advection-diffusion equations by the means of integral identities or expansions, in the sense that the generic constants in the estimates depend only on certain Sobolev norms of the true solution but not on the scaling parameter epsilon. These estimates, combined with a priori stability estimates of the governing partial differential equations, yield an "-uniform estimate of the bilinear Galerkin finite element method, in which the generic constants depend only on the Sobolev norms of the initial and right data but not on the scaling parameter epsilon.

  • History

Published online: 2012-09

  • AMS Subject Headings

65N15, 65N30

  • Cited by