Volume 9, Issue 1
A Uniformly Optimal-Order Estimate for Bilinear Finite Element Method for Transient Advection-Diffusion Equations

Q. Lin, K. Wang, H. Wang & X. Yin

Int. J. Numer. Anal. Mod., 9 (2012), pp. 73-85.

Published online: 2012-09

Preview Full PDF 619 4267
Export citation
  • Abstract

We prove an optimal-order error estimate in a weighted energy norm for bilinear Galerkin finite element method for two-dimensional time-dependent advection-diffusion equations by the means of integral identities or expansions, in the sense that the generic constants in the estimates depend only on certain Sobolev norms of the true solution but not on the scaling parameter $\varepsilon$. These estimates, combined with a priori stability estimates of the governing partial differential equations, yield an "$\varepsilon$-uniform estimate of the bilinear Galerkin finite element method, in which the generic constants depend only on the Sobolev norms of the initial and right data but not on the scaling parameter $\varepsilon$.

  • Keywords

Convergence analysis, Galerkin methods, integral identity, integral expansion, uniform error estimates.

  • AMS Subject Headings

65N15, 65N30

  • Copyright

COPYRIGHT: © Global Science Press

  • Email address
  • BibTex
  • RIS
  • TXT
@Article{IJNAM-9-73, author = {}, title = {A Uniformly Optimal-Order Estimate for Bilinear Finite Element Method for Transient Advection-Diffusion Equations}, journal = {International Journal of Numerical Analysis and Modeling}, year = {2012}, volume = {9}, number = {1}, pages = {73--85}, abstract = {

We prove an optimal-order error estimate in a weighted energy norm for bilinear Galerkin finite element method for two-dimensional time-dependent advection-diffusion equations by the means of integral identities or expansions, in the sense that the generic constants in the estimates depend only on certain Sobolev norms of the true solution but not on the scaling parameter $\varepsilon$. These estimates, combined with a priori stability estimates of the governing partial differential equations, yield an "$\varepsilon$-uniform estimate of the bilinear Galerkin finite element method, in which the generic constants depend only on the Sobolev norms of the initial and right data but not on the scaling parameter $\varepsilon$.

}, issn = {2617-8710}, doi = {https://doi.org/}, url = {http://global-sci.org/intro/article_detail/ijnam/612.html} }
TY - JOUR T1 - A Uniformly Optimal-Order Estimate for Bilinear Finite Element Method for Transient Advection-Diffusion Equations JO - International Journal of Numerical Analysis and Modeling VL - 1 SP - 73 EP - 85 PY - 2012 DA - 2012/09 SN - 9 DO - http://doi.org/ UR - https://global-sci.org/intro/article_detail/ijnam/612.html KW - Convergence analysis, Galerkin methods, integral identity, integral expansion, uniform error estimates. AB -

We prove an optimal-order error estimate in a weighted energy norm for bilinear Galerkin finite element method for two-dimensional time-dependent advection-diffusion equations by the means of integral identities or expansions, in the sense that the generic constants in the estimates depend only on certain Sobolev norms of the true solution but not on the scaling parameter $\varepsilon$. These estimates, combined with a priori stability estimates of the governing partial differential equations, yield an "$\varepsilon$-uniform estimate of the bilinear Galerkin finite element method, in which the generic constants depend only on the Sobolev norms of the initial and right data but not on the scaling parameter $\varepsilon$.

Q. Lin, K. Wang, H. Wang & X. Yin. (1970). A Uniformly Optimal-Order Estimate for Bilinear Finite Element Method for Transient Advection-Diffusion Equations. International Journal of Numerical Analysis and Modeling. 9 (1). 73-85. doi:
Copy to clipboard
The citation has been copied to your clipboard