- Journal Home
- Volume 22 - 2025
- Volume 21 - 2024
- Volume 20 - 2023
- Volume 19 - 2022
- Volume 18 - 2021
- Volume 17 - 2020
- Volume 16 - 2019
- Volume 15 - 2018
- Volume 14 - 2017
- Volume 13 - 2016
- Volume 12 - 2015
- Volume 11 - 2014
- Volume 10 - 2013
- Volume 9 - 2012
- Volume 8 - 2011
- Volume 7 - 2010
- Volume 6 - 2009
- Volume 5 - 2008
- Volume 4 - 2007
- Volume 3 - 2006
- Volume 2 - 2005
- Volume 1 - 2004
Cited by
- BibTex
- RIS
- TXT
The optimal $\mathcal{H}_2$ model reduction is an important tool in studying dynamical systems of a large order and their numerical simulation. We formulate the reduction problem as a minimization problem over the Grassmann manifold. This allows us to develop a fast gradient flow algorithm suitable for large-scale optimal $\mathcal{H}_2$ model reduction problems. The proposed algorithm converges globally and the resulting reduced system preserves stability of the original system. Furthermore, based on the fast gradient flow algorithm, we propose a sequentially quadratic approximation algorithm which converges faster and guarantees the global convergence. Numerical examples are presented to demonstrate the approximation accuracy and the computational efficiency of the proposed algorithms.
}, issn = {2617-8710}, doi = {https://doi.org/}, url = {http://global-sci.org/intro/article_detail/ijnam/606.html} }The optimal $\mathcal{H}_2$ model reduction is an important tool in studying dynamical systems of a large order and their numerical simulation. We formulate the reduction problem as a minimization problem over the Grassmann manifold. This allows us to develop a fast gradient flow algorithm suitable for large-scale optimal $\mathcal{H}_2$ model reduction problems. The proposed algorithm converges globally and the resulting reduced system preserves stability of the original system. Furthermore, based on the fast gradient flow algorithm, we propose a sequentially quadratic approximation algorithm which converges faster and guarantees the global convergence. Numerical examples are presented to demonstrate the approximation accuracy and the computational efficiency of the proposed algorithms.