- Journal Home
- Volume 22 - 2025
- Volume 21 - 2024
- Volume 20 - 2023
- Volume 19 - 2022
- Volume 18 - 2021
- Volume 17 - 2020
- Volume 16 - 2019
- Volume 15 - 2018
- Volume 14 - 2017
- Volume 13 - 2016
- Volume 12 - 2015
- Volume 11 - 2014
- Volume 10 - 2013
- Volume 9 - 2012
- Volume 8 - 2011
- Volume 7 - 2010
- Volume 6 - 2009
- Volume 5 - 2008
- Volume 4 - 2007
- Volume 3 - 2006
- Volume 2 - 2005
- Volume 1 - 2004
Cited by
- BibTex
- RIS
- TXT
Efficient methods for solving linear algebraic equations are crucial to creating fast and accurate numerical simulations in many applications. In this paper, an algebraic multigrid (AMG) method, which combines the classical coarsening scheme by [19] with an energy-minimizing interpolation algorithm by [26], is employed and tested for subsurface water simulations. Based on numerical tests using real field data, our results suggest that the energy-minimizing algebraic multigrid method is efficient and, more importantly, very robust.
}, issn = {2617-8710}, doi = {https://doi.org/}, url = {http://global-sci.org/intro/article_detail/ijnam/573.html} }Efficient methods for solving linear algebraic equations are crucial to creating fast and accurate numerical simulations in many applications. In this paper, an algebraic multigrid (AMG) method, which combines the classical coarsening scheme by [19] with an energy-minimizing interpolation algorithm by [26], is employed and tested for subsurface water simulations. Based on numerical tests using real field data, our results suggest that the energy-minimizing algebraic multigrid method is efficient and, more importantly, very robust.