- Journal Home
- Volume 22 - 2025
- Volume 21 - 2024
- Volume 20 - 2023
- Volume 19 - 2022
- Volume 18 - 2021
- Volume 17 - 2020
- Volume 16 - 2019
- Volume 15 - 2018
- Volume 14 - 2017
- Volume 13 - 2016
- Volume 12 - 2015
- Volume 11 - 2014
- Volume 10 - 2013
- Volume 9 - 2012
- Volume 8 - 2011
- Volume 7 - 2010
- Volume 6 - 2009
- Volume 5 - 2008
- Volume 4 - 2007
- Volume 3 - 2006
- Volume 2 - 2005
- Volume 1 - 2004
Cited by
- BibTex
- RIS
- TXT
In this paper local discontinuous Galerkin method (LDG) was analyzed for solving 1-D convection-diffusion equations with a boundary layer near the outflow boundary. Local error estimates are established on quasi-uniform meshes with maximum mesh size $h$. On a subdomain with $O(h\ln(1/h))$ distance away from the outflow boundary, the $L^2$ error of the approximations to the solution and its derivative converges at the optimal rate $O(h^{k+1})$ when polynomials of degree at most $k$ are used. Numerical experiments illustrate that the rate of convergence is uniformly valid and sharp. The numerical comparison of the LDG method and the streamline-diffusion finite element method are also presented.
}, issn = {2617-8710}, doi = {https://doi.org/}, url = {http://global-sci.org/intro/article_detail/ijnam/572.html} }In this paper local discontinuous Galerkin method (LDG) was analyzed for solving 1-D convection-diffusion equations with a boundary layer near the outflow boundary. Local error estimates are established on quasi-uniform meshes with maximum mesh size $h$. On a subdomain with $O(h\ln(1/h))$ distance away from the outflow boundary, the $L^2$ error of the approximations to the solution and its derivative converges at the optimal rate $O(h^{k+1})$ when polynomials of degree at most $k$ are used. Numerical experiments illustrate that the rate of convergence is uniformly valid and sharp. The numerical comparison of the LDG method and the streamline-diffusion finite element method are also presented.