- Journal Home
- Volume 22 - 2025
- Volume 21 - 2024
- Volume 20 - 2023
- Volume 19 - 2022
- Volume 18 - 2021
- Volume 17 - 2020
- Volume 16 - 2019
- Volume 15 - 2018
- Volume 14 - 2017
- Volume 13 - 2016
- Volume 12 - 2015
- Volume 11 - 2014
- Volume 10 - 2013
- Volume 9 - 2012
- Volume 8 - 2011
- Volume 7 - 2010
- Volume 6 - 2009
- Volume 5 - 2008
- Volume 4 - 2007
- Volume 3 - 2006
- Volume 2 - 2005
- Volume 1 - 2004
Cited by
- BibTex
- RIS
- TXT
In this article, we investigate the decay rate of the solutions of two water wave models with a nonlocal viscous term written in the KdV form $$u_t+u_x+\beta u_{xxx}+\frac{\sqrt v}{\sqrt \pi}\int^t_0\frac{u_t(s)}{\sqrt{t-s}}ds+uu_x=vu_{xx}$$ and $$u_t+u_x-\beta u_{txx}+\frac{\sqrt v}{\sqrt \pi}\int^t_0\frac{u_t(s)}{\sqrt{t-s}}ds+uu_x=vu_{xx}$$ in the BBM form. In order to realize this numerical study, a numerical scheme based on the $G^{\alpha}$-scheme is developed.
}, issn = {2617-8710}, doi = {https://doi.org/}, url = {http://global-sci.org/intro/article_detail/ijnam/571.html} }In this article, we investigate the decay rate of the solutions of two water wave models with a nonlocal viscous term written in the KdV form $$u_t+u_x+\beta u_{xxx}+\frac{\sqrt v}{\sqrt \pi}\int^t_0\frac{u_t(s)}{\sqrt{t-s}}ds+uu_x=vu_{xx}$$ and $$u_t+u_x-\beta u_{txx}+\frac{\sqrt v}{\sqrt \pi}\int^t_0\frac{u_t(s)}{\sqrt{t-s}}ds+uu_x=vu_{xx}$$ in the BBM form. In order to realize this numerical study, a numerical scheme based on the $G^{\alpha}$-scheme is developed.