- Journal Home
- Volume 22 - 2025
- Volume 21 - 2024
- Volume 20 - 2023
- Volume 19 - 2022
- Volume 18 - 2021
- Volume 17 - 2020
- Volume 16 - 2019
- Volume 15 - 2018
- Volume 14 - 2017
- Volume 13 - 2016
- Volume 12 - 2015
- Volume 11 - 2014
- Volume 10 - 2013
- Volume 9 - 2012
- Volume 8 - 2011
- Volume 7 - 2010
- Volume 6 - 2009
- Volume 5 - 2008
- Volume 4 - 2007
- Volume 3 - 2006
- Volume 2 - 2005
- Volume 1 - 2004
Cited by
- BibTex
- RIS
- TXT
We present higher degree immersed finite element (IFE) spaces that can be used to solve two dimensional second order elliptic interface problems without requiring the mesh to be aligned with the material interfaces. The interpolation errors in the proposed piecewise $p^{th}$ degree spaces yield optimal $\mathcal{O}(h^{p+1})$ and $\mathcal{O}(h^p)$ convergence rates in the $L^2$ and broken $H^1$ norms, respectively, under mesh refinement. A partially penalized method is developed which also converges optimally with the proposed higher degree IFE spaces. While this penalty is not needed when either linear or bilinear IFE space is used, a numerical example is presented to show that it is necessary when a higher degree IFE space is used.
}, issn = {2617-8710}, doi = {https://doi.org/}, url = {http://global-sci.org/intro/article_detail/ijnam/541.html} }We present higher degree immersed finite element (IFE) spaces that can be used to solve two dimensional second order elliptic interface problems without requiring the mesh to be aligned with the material interfaces. The interpolation errors in the proposed piecewise $p^{th}$ degree spaces yield optimal $\mathcal{O}(h^{p+1})$ and $\mathcal{O}(h^p)$ convergence rates in the $L^2$ and broken $H^1$ norms, respectively, under mesh refinement. A partially penalized method is developed which also converges optimally with the proposed higher degree IFE spaces. While this penalty is not needed when either linear or bilinear IFE space is used, a numerical example is presented to show that it is necessary when a higher degree IFE space is used.