- Journal Home
- Volume 22 - 2025
- Volume 21 - 2024
- Volume 20 - 2023
- Volume 19 - 2022
- Volume 18 - 2021
- Volume 17 - 2020
- Volume 16 - 2019
- Volume 15 - 2018
- Volume 14 - 2017
- Volume 13 - 2016
- Volume 12 - 2015
- Volume 11 - 2014
- Volume 10 - 2013
- Volume 9 - 2012
- Volume 8 - 2011
- Volume 7 - 2010
- Volume 6 - 2009
- Volume 5 - 2008
- Volume 4 - 2007
- Volume 3 - 2006
- Volume 2 - 2005
- Volume 1 - 2004
Int. J. Numer. Anal. Mod., 22 (2025), pp. 113-138.
Published online: 2024-11
Cited by
- BibTex
- RIS
- TXT
Markowitz’s criterion aims to balance expected return and risk when optimizing the portfolio. The expected return level is usually fixed according to the risk appetite of an investor, then the risk is minimized at this fixed return level. However, the investor may not know which return level is suitable for her/him and the current financial circumstance. It motivates us to find a novel approach that adaptively optimizes this return level and the portfolio at the same time. It not only relieves the trouble of deciding the return level during an investment but also gets more adaptive to the ever-changing financial market than a subjective return level. In order to solve the new model, we propose an exact, convergent, and efficient Krasnoselskii-Mann Proximity Algorithm based on the proximity operator and Krasnoselskii-Mann momentum technique. Extensive experiments show that the proposed method achieves significant improvements over state-of-the-art methods in portfolio optimization. This finding may contribute a new perspective on the relationship between return and risk in portfolio optimization
}, issn = {2617-8710}, doi = {https://doi.org/10.4208/ijnam2025-1006}, url = {http://global-sci.org/intro/article_detail/ijnam/23569.html} }Markowitz’s criterion aims to balance expected return and risk when optimizing the portfolio. The expected return level is usually fixed according to the risk appetite of an investor, then the risk is minimized at this fixed return level. However, the investor may not know which return level is suitable for her/him and the current financial circumstance. It motivates us to find a novel approach that adaptively optimizes this return level and the portfolio at the same time. It not only relieves the trouble of deciding the return level during an investment but also gets more adaptive to the ever-changing financial market than a subjective return level. In order to solve the new model, we propose an exact, convergent, and efficient Krasnoselskii-Mann Proximity Algorithm based on the proximity operator and Krasnoselskii-Mann momentum technique. Extensive experiments show that the proposed method achieves significant improvements over state-of-the-art methods in portfolio optimization. This finding may contribute a new perspective on the relationship between return and risk in portfolio optimization