- Journal Home
- Volume 22 - 2025
- Volume 21 - 2024
- Volume 20 - 2023
- Volume 19 - 2022
- Volume 18 - 2021
- Volume 17 - 2020
- Volume 16 - 2019
- Volume 15 - 2018
- Volume 14 - 2017
- Volume 13 - 2016
- Volume 12 - 2015
- Volume 11 - 2014
- Volume 10 - 2013
- Volume 9 - 2012
- Volume 8 - 2011
- Volume 7 - 2010
- Volume 6 - 2009
- Volume 5 - 2008
- Volume 4 - 2007
- Volume 3 - 2006
- Volume 2 - 2005
- Volume 1 - 2004
Int. J. Numer. Anal. Mod., 22 (2025), pp. 1-20.
Published online: 2024-11
Cited by
- BibTex
- RIS
- TXT
In this study, we integrate the established obstacle problem formulation from ice sheet modeling [1, 2] with cutting-edge deep learning methodologies to enhance ice thickness predictions, specifically targeting the Greenland ice sheet. By harmonizing the mathematical structure with an energy minimization framework tailored for neural network approximations, our method’s efficacy is confirmed through both 1D and 2D numerical simulations. Utilizing the NSIDC-0092 dataset for Greenland [22] and incorporating bedrock topography for model pre-training, we register notable advances in prediction accuracy. Our research underscores the potent combination of traditional mathematical models and advanced computational techniques in delivering precise ice thickness estimations.
}, issn = {2617-8710}, doi = {https://doi.org/10.4208/ijnam2025-1001}, url = {http://global-sci.org/intro/article_detail/ijnam/23564.html} }In this study, we integrate the established obstacle problem formulation from ice sheet modeling [1, 2] with cutting-edge deep learning methodologies to enhance ice thickness predictions, specifically targeting the Greenland ice sheet. By harmonizing the mathematical structure with an energy minimization framework tailored for neural network approximations, our method’s efficacy is confirmed through both 1D and 2D numerical simulations. Utilizing the NSIDC-0092 dataset for Greenland [22] and incorporating bedrock topography for model pre-training, we register notable advances in prediction accuracy. Our research underscores the potent combination of traditional mathematical models and advanced computational techniques in delivering precise ice thickness estimations.