- Journal Home
- Volume 22 - 2025
- Volume 21 - 2024
- Volume 20 - 2023
- Volume 19 - 2022
- Volume 18 - 2021
- Volume 17 - 2020
- Volume 16 - 2019
- Volume 15 - 2018
- Volume 14 - 2017
- Volume 13 - 2016
- Volume 12 - 2015
- Volume 11 - 2014
- Volume 10 - 2013
- Volume 9 - 2012
- Volume 8 - 2011
- Volume 7 - 2010
- Volume 6 - 2009
- Volume 5 - 2008
- Volume 4 - 2007
- Volume 3 - 2006
- Volume 2 - 2005
- Volume 1 - 2004
Int. J. Numer. Anal. Mod., 20 (2023), pp. 709-723.
Published online: 2023-09
Cited by
- BibTex
- RIS
- TXT
This paper focuses on neural network-based learning methods for identifying nonlinear dynamic systems. The Takagi-Sugeno (T-S) fuzzy model is introduced to represent nonlinear systems in a linear way. Fractional calculus is integrated to minimize the cost function, yielding a fractional-order learning algorithm that can derive optimal parameters in the T-S fuzzy model. The proposed algorithm is evaluated by comparing it with an integer-order method for identifying numerical nonlinear systems and a water quality system. Both evaluations demonstrate that the proposed algorithm can effectively reduce errors and improve model accuracy.
}, issn = {2617-8710}, doi = {https://doi.org/10.4208/ijnam2023-1031}, url = {http://global-sci.org/intro/article_detail/ijnam/22009.html} }This paper focuses on neural network-based learning methods for identifying nonlinear dynamic systems. The Takagi-Sugeno (T-S) fuzzy model is introduced to represent nonlinear systems in a linear way. Fractional calculus is integrated to minimize the cost function, yielding a fractional-order learning algorithm that can derive optimal parameters in the T-S fuzzy model. The proposed algorithm is evaluated by comparing it with an integer-order method for identifying numerical nonlinear systems and a water quality system. Both evaluations demonstrate that the proposed algorithm can effectively reduce errors and improve model accuracy.