- Journal Home
- Volume 22 - 2025
- Volume 21 - 2024
- Volume 20 - 2023
- Volume 19 - 2022
- Volume 18 - 2021
- Volume 17 - 2020
- Volume 16 - 2019
- Volume 15 - 2018
- Volume 14 - 2017
- Volume 13 - 2016
- Volume 12 - 2015
- Volume 11 - 2014
- Volume 10 - 2013
- Volume 9 - 2012
- Volume 8 - 2011
- Volume 7 - 2010
- Volume 6 - 2009
- Volume 5 - 2008
- Volume 4 - 2007
- Volume 3 - 2006
- Volume 2 - 2005
- Volume 1 - 2004
Int. J. Numer. Anal. Mod., 20 (2023), pp. 647-666.
Published online: 2023-09
Cited by
- BibTex
- RIS
- TXT
A new weak Galerkin method with weakly enforced Dirichlet boundary condition is proposed and analyzed for the second order elliptic problems. Two penalty terms are incorporated into the weak Galerkin method to enforce the boundary condition in the weak sense. The new numerical scheme is designed by using the locally constructed weak gradient. Optimal order error estimates are established for the numerical approximation in the energy norm and usual $L^2$ norm. Moreover, by using the Schur complement technique, the unknowns of the numerical scheme are only defined on the boundary of each piecewise element and an effective implementation of the reduced global system is presented. Some numerical experiments are reported to demonstrate the accuracy and efficiency of the proposed method.
}, issn = {2617-8710}, doi = {https://doi.org/10.4208/ijnam2023-1028}, url = {http://global-sci.org/intro/article_detail/ijnam/22006.html} }A new weak Galerkin method with weakly enforced Dirichlet boundary condition is proposed and analyzed for the second order elliptic problems. Two penalty terms are incorporated into the weak Galerkin method to enforce the boundary condition in the weak sense. The new numerical scheme is designed by using the locally constructed weak gradient. Optimal order error estimates are established for the numerical approximation in the energy norm and usual $L^2$ norm. Moreover, by using the Schur complement technique, the unknowns of the numerical scheme are only defined on the boundary of each piecewise element and an effective implementation of the reduced global system is presented. Some numerical experiments are reported to demonstrate the accuracy and efficiency of the proposed method.