- Journal Home
- Volume 22 - 2025
- Volume 21 - 2024
- Volume 20 - 2023
- Volume 19 - 2022
- Volume 18 - 2021
- Volume 17 - 2020
- Volume 16 - 2019
- Volume 15 - 2018
- Volume 14 - 2017
- Volume 13 - 2016
- Volume 12 - 2015
- Volume 11 - 2014
- Volume 10 - 2013
- Volume 9 - 2012
- Volume 8 - 2011
- Volume 7 - 2010
- Volume 6 - 2009
- Volume 5 - 2008
- Volume 4 - 2007
- Volume 3 - 2006
- Volume 2 - 2005
- Volume 1 - 2004
Int. J. Numer. Anal. Mod., 20 (2023), pp. 353-370.
Published online: 2023-03
Cited by
- BibTex
- RIS
- TXT
The aim of this paper is to study a simple nonlocal-in-time dynamic system proposed for the effective modeling of complex diffusive regimes in heterogeneous media. We present its solutions and their commonly studied statistics such as the mean square distance. This interesting model employs a nonlocal operator to replace the conventional first-order time-derivative. It introduces a finite memory effect of a constant length encoded through a kernel function. The nonlocal-in-time operator is related to fractional time derivatives that rely on the entire time-history on one hand, while reduces to, on the other hand, the classical time derivative if the length of the memory window diminishes. This allows us to demonstrate the effectiveness of the nonlocal-in-time model in capturing the crossover widely observed in nature between the initial sub-diffusion and the long time normal diffusion.
}, issn = {2617-8710}, doi = {https://doi.org/10.4208/ijnam2023-1014}, url = {http://global-sci.org/intro/article_detail/ijnam/21537.html} }The aim of this paper is to study a simple nonlocal-in-time dynamic system proposed for the effective modeling of complex diffusive regimes in heterogeneous media. We present its solutions and their commonly studied statistics such as the mean square distance. This interesting model employs a nonlocal operator to replace the conventional first-order time-derivative. It introduces a finite memory effect of a constant length encoded through a kernel function. The nonlocal-in-time operator is related to fractional time derivatives that rely on the entire time-history on one hand, while reduces to, on the other hand, the classical time derivative if the length of the memory window diminishes. This allows us to demonstrate the effectiveness of the nonlocal-in-time model in capturing the crossover widely observed in nature between the initial sub-diffusion and the long time normal diffusion.