- Journal Home
- Volume 22 - 2025
- Volume 21 - 2024
- Volume 20 - 2023
- Volume 19 - 2022
- Volume 18 - 2021
- Volume 17 - 2020
- Volume 16 - 2019
- Volume 15 - 2018
- Volume 14 - 2017
- Volume 13 - 2016
- Volume 12 - 2015
- Volume 11 - 2014
- Volume 10 - 2013
- Volume 9 - 2012
- Volume 8 - 2011
- Volume 7 - 2010
- Volume 6 - 2009
- Volume 5 - 2008
- Volume 4 - 2007
- Volume 3 - 2006
- Volume 2 - 2005
- Volume 1 - 2004
Int. J. Numer. Anal. Mod., 20 (2023), pp. 134-151.
Published online: 2022-11
Cited by
- BibTex
- RIS
- TXT
In this paper, we present and analyze MINI Mixed finite volume element methods (MINI-FVEM) for Stokes problem on triangular meshes. The trial spaces for velocity and pressure are chosen as MINI element pair, and the test spaces for velocity and pressure are taken as the piecewise constant function spaces on the respective dual grid. It is worth noting that the bilinear form derived from the gradient operator and the bilinear form derived from the divergence are unsymmetric. With the help of two new transformation operators, we establish the equivalence of bilinear forms for gradient operator between finite volume methods and finite element methods, and the equivalence of bilinear forms for divergence operator between finite volume methods and finite element methods, so the inf-sup conditions are obtained. By the element analysis methods, we give the positive definiteness of bilinear form for Laplacian operator. Based on the stability, convergence analysis of schemes are established. Numerical experiments are presented to illustrate the theoretical results.
}, issn = {2617-8710}, doi = {https://doi.org/ 10.4208/ijnam2023-1006}, url = {http://global-sci.org/intro/article_detail/ijnam/21207.html} }In this paper, we present and analyze MINI Mixed finite volume element methods (MINI-FVEM) for Stokes problem on triangular meshes. The trial spaces for velocity and pressure are chosen as MINI element pair, and the test spaces for velocity and pressure are taken as the piecewise constant function spaces on the respective dual grid. It is worth noting that the bilinear form derived from the gradient operator and the bilinear form derived from the divergence are unsymmetric. With the help of two new transformation operators, we establish the equivalence of bilinear forms for gradient operator between finite volume methods and finite element methods, and the equivalence of bilinear forms for divergence operator between finite volume methods and finite element methods, so the inf-sup conditions are obtained. By the element analysis methods, we give the positive definiteness of bilinear form for Laplacian operator. Based on the stability, convergence analysis of schemes are established. Numerical experiments are presented to illustrate the theoretical results.